René Schiffner, Marius Nistor, Sabine Juliane Bischoff, Georg Matziolis, Martin Schmidt, Thomas Lehmann
{"title":"人舒张素-2(色拉素)对绵羊急性缺氧缺氧肺血管收缩的影响","authors":"René Schiffner, Marius Nistor, Sabine Juliane Bischoff, Georg Matziolis, Martin Schmidt, Thomas Lehmann","doi":"10.2147/HP.S165092","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Hypoxia induces pulmonary vasoconstriction with a subsequent increase of pulmonary artery pressure (PAP), which can result in pulmonary hypertension. Serelaxin has shown an increase of pulmonary hemodynamic parameters after serelaxin injection. We therefore investigated the response of pulmonary hemodynamic parameters after serelaxin administration in a clinically relevant model.</p><p><strong>Methods: </strong>Six controls and six sheep that received 30 μg/kg serelaxin underwent right heart catheterization during a 12-minute hypoxia period (inhalation of 5% oxygen and 95% nitrogen) and subsequent reoxygenation. Systolic, diastolic, and mean values of both PAP (respectively, PAPs, PAPd, and PAPm) and pulmonary capillary wedge pressure (respectively, PCWPs, PCWPd, and PCWPm), blood gases, heart rate (HR), and both peripheral and pulmonary arterial oxygen saturation were obtained. Cardiac output (CO), stroke volume (SV), pulmonary vascular resistance (PVR), pulmonary arterial compliance (PAcompl), and systemic vascular resistance (SVR) were calculated.</p><p><strong>Results: </strong>The key findings of the current study are that serelaxin prevents the rise of PAPs (<i>p</i>≤0.001), PAPm, PCWPm, PCWPs (<i>p</i>≤0.03), and PAPd (<i>p</i>≤0.05) during hypoxia, while it simultaneously increases CO and SV (<i>p</i>≤0.001). Similar courses of decreases of PAPm, PAPd, PAPs, CO, SVR (<i>p</i>≤0.001), and PCWPd (<i>p</i>≤0.03) as compared to hypoxic values were observed during reoxygenation. In direct comparison, the experimental groups differed during hypoxia in regard to HR, PAPm, PVR, and SVR (<i>p</i>≤0.03), and during reoxygenation in regard to HR (<i>p</i>≤0.001), PAPm, PAPs, PAPd, PVR, SVR (<i>p</i>≤0.03), and PCWPd (<i>p</i>≤0.05).</p><p><strong>Conclusion: </strong>The findings of this study suggest that serelaxin treatment improves pulmonary hemodynamic parameters during acute hypoxia.</p>","PeriodicalId":73270,"journal":{"name":"Hypoxia (Auckland, N.Z.)","volume":"6 ","pages":"11-22"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/HP.S165092","citationCount":"4","resultStr":"{\"title\":\"Effects of human relaxin-2 (serelaxin) on hypoxic pulmonary vasoconstriction during acute hypoxia in a sheep model.\",\"authors\":\"René Schiffner, Marius Nistor, Sabine Juliane Bischoff, Georg Matziolis, Martin Schmidt, Thomas Lehmann\",\"doi\":\"10.2147/HP.S165092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Hypoxia induces pulmonary vasoconstriction with a subsequent increase of pulmonary artery pressure (PAP), which can result in pulmonary hypertension. Serelaxin has shown an increase of pulmonary hemodynamic parameters after serelaxin injection. We therefore investigated the response of pulmonary hemodynamic parameters after serelaxin administration in a clinically relevant model.</p><p><strong>Methods: </strong>Six controls and six sheep that received 30 μg/kg serelaxin underwent right heart catheterization during a 12-minute hypoxia period (inhalation of 5% oxygen and 95% nitrogen) and subsequent reoxygenation. Systolic, diastolic, and mean values of both PAP (respectively, PAPs, PAPd, and PAPm) and pulmonary capillary wedge pressure (respectively, PCWPs, PCWPd, and PCWPm), blood gases, heart rate (HR), and both peripheral and pulmonary arterial oxygen saturation were obtained. Cardiac output (CO), stroke volume (SV), pulmonary vascular resistance (PVR), pulmonary arterial compliance (PAcompl), and systemic vascular resistance (SVR) were calculated.</p><p><strong>Results: </strong>The key findings of the current study are that serelaxin prevents the rise of PAPs (<i>p</i>≤0.001), PAPm, PCWPm, PCWPs (<i>p</i>≤0.03), and PAPd (<i>p</i>≤0.05) during hypoxia, while it simultaneously increases CO and SV (<i>p</i>≤0.001). Similar courses of decreases of PAPm, PAPd, PAPs, CO, SVR (<i>p</i>≤0.001), and PCWPd (<i>p</i>≤0.03) as compared to hypoxic values were observed during reoxygenation. In direct comparison, the experimental groups differed during hypoxia in regard to HR, PAPm, PVR, and SVR (<i>p</i>≤0.03), and during reoxygenation in regard to HR (<i>p</i>≤0.001), PAPm, PAPs, PAPd, PVR, SVR (<i>p</i>≤0.03), and PCWPd (<i>p</i>≤0.05).</p><p><strong>Conclusion: </strong>The findings of this study suggest that serelaxin treatment improves pulmonary hemodynamic parameters during acute hypoxia.</p>\",\"PeriodicalId\":73270,\"journal\":{\"name\":\"Hypoxia (Auckland, N.Z.)\",\"volume\":\"6 \",\"pages\":\"11-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2147/HP.S165092\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hypoxia (Auckland, N.Z.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/HP.S165092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hypoxia (Auckland, N.Z.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/HP.S165092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of human relaxin-2 (serelaxin) on hypoxic pulmonary vasoconstriction during acute hypoxia in a sheep model.
Purpose: Hypoxia induces pulmonary vasoconstriction with a subsequent increase of pulmonary artery pressure (PAP), which can result in pulmonary hypertension. Serelaxin has shown an increase of pulmonary hemodynamic parameters after serelaxin injection. We therefore investigated the response of pulmonary hemodynamic parameters after serelaxin administration in a clinically relevant model.
Methods: Six controls and six sheep that received 30 μg/kg serelaxin underwent right heart catheterization during a 12-minute hypoxia period (inhalation of 5% oxygen and 95% nitrogen) and subsequent reoxygenation. Systolic, diastolic, and mean values of both PAP (respectively, PAPs, PAPd, and PAPm) and pulmonary capillary wedge pressure (respectively, PCWPs, PCWPd, and PCWPm), blood gases, heart rate (HR), and both peripheral and pulmonary arterial oxygen saturation were obtained. Cardiac output (CO), stroke volume (SV), pulmonary vascular resistance (PVR), pulmonary arterial compliance (PAcompl), and systemic vascular resistance (SVR) were calculated.
Results: The key findings of the current study are that serelaxin prevents the rise of PAPs (p≤0.001), PAPm, PCWPm, PCWPs (p≤0.03), and PAPd (p≤0.05) during hypoxia, while it simultaneously increases CO and SV (p≤0.001). Similar courses of decreases of PAPm, PAPd, PAPs, CO, SVR (p≤0.001), and PCWPd (p≤0.03) as compared to hypoxic values were observed during reoxygenation. In direct comparison, the experimental groups differed during hypoxia in regard to HR, PAPm, PVR, and SVR (p≤0.03), and during reoxygenation in regard to HR (p≤0.001), PAPm, PAPs, PAPd, PVR, SVR (p≤0.03), and PCWPd (p≤0.05).
Conclusion: The findings of this study suggest that serelaxin treatment improves pulmonary hemodynamic parameters during acute hypoxia.