Elizabeth H Hutfless, Sujata S Chaudhari, Vinai C Thomas
{"title":"一氧化氮合酶在细菌生理中的新作用。","authors":"Elizabeth H Hutfless, Sujata S Chaudhari, Vinai C Thomas","doi":"10.1016/bs.ampbs.2018.01.006","DOIUrl":null,"url":null,"abstract":"<p><p>Nitric oxide (NO) is a potent inhibitor of diverse cellular processes in bacteria. Therefore, it was surprising to discover that several bacterial species, primarily Gram-positive organisms, harboured a gene encoding nitric oxide synthase (NOS). Recent attempts to characterize bacterial NOS (bNOS) have resulted in the discovery of structural features that may allow it to function as a NO dioxygenase and produce nitrate in addition to NO. Consistent with this characterization, investigations into the biological function of bNOS have also emphasized a role for NOS-dependent nitrate and nitrite production in aerobic and microaerobic respiration. In this review, we aim to compare, contrast, and summarize the structure, biochemistry, and biological role of bNOS with mammalian NOS and discuss how recent advances in our understanding of bNOS have enabled efforts at designing inhibitors against it.</p>","PeriodicalId":50953,"journal":{"name":"Advances in Microbial Physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.ampbs.2018.01.006","citationCount":"10","resultStr":"{\"title\":\"Emerging Roles of Nitric Oxide Synthase in Bacterial Physiology.\",\"authors\":\"Elizabeth H Hutfless, Sujata S Chaudhari, Vinai C Thomas\",\"doi\":\"10.1016/bs.ampbs.2018.01.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nitric oxide (NO) is a potent inhibitor of diverse cellular processes in bacteria. Therefore, it was surprising to discover that several bacterial species, primarily Gram-positive organisms, harboured a gene encoding nitric oxide synthase (NOS). Recent attempts to characterize bacterial NOS (bNOS) have resulted in the discovery of structural features that may allow it to function as a NO dioxygenase and produce nitrate in addition to NO. Consistent with this characterization, investigations into the biological function of bNOS have also emphasized a role for NOS-dependent nitrate and nitrite production in aerobic and microaerobic respiration. In this review, we aim to compare, contrast, and summarize the structure, biochemistry, and biological role of bNOS with mammalian NOS and discuss how recent advances in our understanding of bNOS have enabled efforts at designing inhibitors against it.</p>\",\"PeriodicalId\":50953,\"journal\":{\"name\":\"Advances in Microbial Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/bs.ampbs.2018.01.006\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Microbial Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ampbs.2018.01.006\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Microbial Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ampbs.2018.01.006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Emerging Roles of Nitric Oxide Synthase in Bacterial Physiology.
Nitric oxide (NO) is a potent inhibitor of diverse cellular processes in bacteria. Therefore, it was surprising to discover that several bacterial species, primarily Gram-positive organisms, harboured a gene encoding nitric oxide synthase (NOS). Recent attempts to characterize bacterial NOS (bNOS) have resulted in the discovery of structural features that may allow it to function as a NO dioxygenase and produce nitrate in addition to NO. Consistent with this characterization, investigations into the biological function of bNOS have also emphasized a role for NOS-dependent nitrate and nitrite production in aerobic and microaerobic respiration. In this review, we aim to compare, contrast, and summarize the structure, biochemistry, and biological role of bNOS with mammalian NOS and discuss how recent advances in our understanding of bNOS have enabled efforts at designing inhibitors against it.
期刊介绍:
Advances in Microbial Physiology publishes topical and important reviews, interpreting physiology to include all material that contributes to our understanding of how microorganisms and their component parts work. First published in 1967, the editors have always striven to interpret microbial physiology in the broadest context and have never restricted the contents to traditional views of whole cell physiology.