脑癌成像表型组学工具包(Brain - captk):胶质母细胞瘤定量分析的互动平台。

Saima Rathore, Spyridon Bakas, Sarthak Pati, Hamed Akbari, Ratheesh Kalarot, Patmaa Sridharan, Martin Rozycki, Mark Bergman, Birkan Tunc, Ragini Verma, Michel Bilello, Christos Davatzikos
{"title":"脑癌成像表型组学工具包(Brain - captk):胶质母细胞瘤定量分析的互动平台。","authors":"Saima Rathore,&nbsp;Spyridon Bakas,&nbsp;Sarthak Pati,&nbsp;Hamed Akbari,&nbsp;Ratheesh Kalarot,&nbsp;Patmaa Sridharan,&nbsp;Martin Rozycki,&nbsp;Mark Bergman,&nbsp;Birkan Tunc,&nbsp;Ragini Verma,&nbsp;Michel Bilello,&nbsp;Christos Davatzikos","doi":"10.1007/978-3-319-75238-9_12","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative research, especially in the field of radio(geno)mics, has helped us understand fundamental mechanisms of neurologic diseases. Such research is integrally based on advanced algorithms to derive extensive radiomic features and integrate them into diagnostic and predictive models. To exploit the benefit of such complex algorithms, their swift translation into clinical practice is required, currently hindered by their complicated nature. brain-CaPTk is a modular platform, with components spanning across image processing, segmentation, feature extraction, and machine learning, that facilitates such translation, enabling quantitative analyses without requiring substantial computational background. Thus, brain-CaPTk can be seamlessly integrated into the typical quantification, analysis and reporting workflow of a radiologist, underscoring its clinical potential. This paper describes currently available components of brain-CaPTk and example results from their application in glioblastoma.</p>","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"10670 ","pages":"133-145"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-75238-9_12","citationCount":"50","resultStr":"{\"title\":\"Brain Cancer Imaging Phenomics Toolkit (brain-CaPTk): An Interactive Platform for Quantitative Analysis of Glioblastoma.\",\"authors\":\"Saima Rathore,&nbsp;Spyridon Bakas,&nbsp;Sarthak Pati,&nbsp;Hamed Akbari,&nbsp;Ratheesh Kalarot,&nbsp;Patmaa Sridharan,&nbsp;Martin Rozycki,&nbsp;Mark Bergman,&nbsp;Birkan Tunc,&nbsp;Ragini Verma,&nbsp;Michel Bilello,&nbsp;Christos Davatzikos\",\"doi\":\"10.1007/978-3-319-75238-9_12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantitative research, especially in the field of radio(geno)mics, has helped us understand fundamental mechanisms of neurologic diseases. Such research is integrally based on advanced algorithms to derive extensive radiomic features and integrate them into diagnostic and predictive models. To exploit the benefit of such complex algorithms, their swift translation into clinical practice is required, currently hindered by their complicated nature. brain-CaPTk is a modular platform, with components spanning across image processing, segmentation, feature extraction, and machine learning, that facilitates such translation, enabling quantitative analyses without requiring substantial computational background. Thus, brain-CaPTk can be seamlessly integrated into the typical quantification, analysis and reporting workflow of a radiologist, underscoring its clinical potential. This paper describes currently available components of brain-CaPTk and example results from their application in glioblastoma.</p>\",\"PeriodicalId\":72455,\"journal\":{\"name\":\"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)\",\"volume\":\"10670 \",\"pages\":\"133-145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-75238-9_12\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-75238-9_12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/2/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-75238-9_12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/2/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

定量研究,特别是在无线电(基因)组学领域,帮助我们了解神经系统疾病的基本机制。这种研究完全基于先进的算法,以获得广泛的放射学特征,并将其整合到诊断和预测模型中。为了利用这种复杂算法的好处,需要将其迅速转化为临床实践,目前由于其复杂性而受到阻碍。brain-CaPTk是一个模块化平台,具有跨越图像处理、分割、特征提取和机器学习的组件,可以促进这种翻译,实现定量分析,而无需大量的计算背景。因此,脑- captk可以无缝集成到放射科医生典型的量化、分析和报告工作流程中,凸显其临床潜力。本文介绍了目前可用的脑- captk成分及其在胶质母细胞瘤中的应用实例结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Brain Cancer Imaging Phenomics Toolkit (brain-CaPTk): An Interactive Platform for Quantitative Analysis of Glioblastoma.

Brain Cancer Imaging Phenomics Toolkit (brain-CaPTk): An Interactive Platform for Quantitative Analysis of Glioblastoma.

Brain Cancer Imaging Phenomics Toolkit (brain-CaPTk): An Interactive Platform for Quantitative Analysis of Glioblastoma.

Brain Cancer Imaging Phenomics Toolkit (brain-CaPTk): An Interactive Platform for Quantitative Analysis of Glioblastoma.

Quantitative research, especially in the field of radio(geno)mics, has helped us understand fundamental mechanisms of neurologic diseases. Such research is integrally based on advanced algorithms to derive extensive radiomic features and integrate them into diagnostic and predictive models. To exploit the benefit of such complex algorithms, their swift translation into clinical practice is required, currently hindered by their complicated nature. brain-CaPTk is a modular platform, with components spanning across image processing, segmentation, feature extraction, and machine learning, that facilitates such translation, enabling quantitative analyses without requiring substantial computational background. Thus, brain-CaPTk can be seamlessly integrated into the typical quantification, analysis and reporting workflow of a radiologist, underscoring its clinical potential. This paper describes currently available components of brain-CaPTk and example results from their application in glioblastoma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信