关节强度融合图像合成在多发性硬化病灶分割中的应用。

Greg M Fleishman, Alessandra Valcarcel, Dzung L Pham, Snehashis Roy, Peter A Calabresi, Paul Yushkevich, Russell T Shinohara, Ipek Oguz
{"title":"关节强度融合图像合成在多发性硬化病灶分割中的应用。","authors":"Greg M Fleishman,&nbsp;Alessandra Valcarcel,&nbsp;Dzung L Pham,&nbsp;Snehashis Roy,&nbsp;Peter A Calabresi,&nbsp;Paul Yushkevich,&nbsp;Russell T Shinohara,&nbsp;Ipek Oguz","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a new approach to Multiple Sclerosis lesion segmentation that utilizes synthesized images. A new method of image synthesis is considered: joint intensity fusion (JIF). JIF synthesizes an image from a library of deformably registered and intensity normalized atlases. Each location in the synthesized image is a weighted average of the registered atlases; atlas weights vary spatially. The weights are determined using the joint label fusion (JLF) framework. The primary methodological contribution is the application of JLF to MRI signal directly rather than labels. Synthesized images are then used as additional features in a lesion segmentation task using the OASIS classifier, a logistic regression model on intensities from multiple modalities. The addition of JIF synthesized images improved the Dice-Sorensen coefficient (relative to manually drawn gold standards) of lesion segmentations over the standard model segmentations by 0.0462 ± 0.0050 (mean ± standard deviation) at optimal threshold over all subjects and 10 separate training/testing folds.</p>","PeriodicalId":72455,"journal":{"name":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","volume":"10670 ","pages":"43-54"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920684/pdf/nihms960389.pdf","citationCount":"0","resultStr":"{\"title\":\"Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation.\",\"authors\":\"Greg M Fleishman,&nbsp;Alessandra Valcarcel,&nbsp;Dzung L Pham,&nbsp;Snehashis Roy,&nbsp;Peter A Calabresi,&nbsp;Paul Yushkevich,&nbsp;Russell T Shinohara,&nbsp;Ipek Oguz\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a new approach to Multiple Sclerosis lesion segmentation that utilizes synthesized images. A new method of image synthesis is considered: joint intensity fusion (JIF). JIF synthesizes an image from a library of deformably registered and intensity normalized atlases. Each location in the synthesized image is a weighted average of the registered atlases; atlas weights vary spatially. The weights are determined using the joint label fusion (JLF) framework. The primary methodological contribution is the application of JLF to MRI signal directly rather than labels. Synthesized images are then used as additional features in a lesion segmentation task using the OASIS classifier, a logistic regression model on intensities from multiple modalities. The addition of JIF synthesized images improved the Dice-Sorensen coefficient (relative to manually drawn gold standards) of lesion segmentations over the standard model segmentations by 0.0462 ± 0.0050 (mean ± standard deviation) at optimal threshold over all subjects and 10 separate training/testing folds.</p>\",\"PeriodicalId\":72455,\"journal\":{\"name\":\"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)\",\"volume\":\"10670 \",\"pages\":\"43-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920684/pdf/nihms960389.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/2/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brainlesion : glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes (Workshop)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/2/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种利用合成图像对多发性硬化症病变进行分割的新方法。提出了一种新的图像合成方法:关节强度融合(JIF)。JIF从可变形注册和强度归一化图集库中合成图像。合成图像中的每个位置是注册地图集的加权平均值;地图集权重在空间上是不同的。使用联合标签融合(JLF)框架确定权重。主要的方法贡献是JLF直接应用于MRI信号,而不是标签。然后使用OASIS分类器将合成的图像用作病变分割任务中的附加特征,OASIS分类器是一种基于多模态强度的逻辑回归模型。加入JIF合成图像后,病灶分割的骰子-索伦森系数(相对于手工绘制的金标准)比标准模型分割在所有受试者和10个单独的训练/测试折叠的最佳阈值下提高了0.0462±0.0050(平均值±标准差)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation.

Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation.

Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation.

Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation.

We propose a new approach to Multiple Sclerosis lesion segmentation that utilizes synthesized images. A new method of image synthesis is considered: joint intensity fusion (JIF). JIF synthesizes an image from a library of deformably registered and intensity normalized atlases. Each location in the synthesized image is a weighted average of the registered atlases; atlas weights vary spatially. The weights are determined using the joint label fusion (JLF) framework. The primary methodological contribution is the application of JLF to MRI signal directly rather than labels. Synthesized images are then used as additional features in a lesion segmentation task using the OASIS classifier, a logistic regression model on intensities from multiple modalities. The addition of JIF synthesized images improved the Dice-Sorensen coefficient (relative to manually drawn gold standards) of lesion segmentations over the standard model segmentations by 0.0462 ± 0.0050 (mean ± standard deviation) at optimal threshold over all subjects and 10 separate training/testing folds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信