合成生物学:设计免疫疗法。

IF 12.8 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL
Jamie Brenner, Jang Hwan Cho, Nicole M L Wong, Wilson W Wong
{"title":"合成生物学:设计免疫疗法。","authors":"Jamie Brenner,&nbsp;Jang Hwan Cho,&nbsp;Nicole M L Wong,&nbsp;Wilson W Wong","doi":"10.1146/annurev-bioeng-062117-121147","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular immunotherapy holds great promise for the treatment of human disease. Clinical evidence suggests that T cell immunotherapies have the potential to combat cancers that evade traditional immunotherapy. Despite promising results, adverse effects leading to fatalities have left scientists seeking tighter control over these therapies, which is reflected in the growing body of synthetic biology literature focused on developing tightly controlled, context-independent parts. In addition, researchers are adapting these tools for other uses, such as for the treatment of autoimmune disease, HIV infection, and fungal interactions. We review this body of work and devote special attention to approaches that may lend themselves to the development of an \"ideal\" therapy: one that is safe, efficient, and easy to manufacture. We conclude with a look toward the future of immunotherapy: how synthetic biology can shift the paradigm from the treatment of disease to a focus on wellness and human health as a whole.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"20 ","pages":"95-118"},"PeriodicalIF":12.8000,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-bioeng-062117-121147","citationCount":"23","resultStr":"{\"title\":\"Synthetic Biology: Immunotherapy by Design.\",\"authors\":\"Jamie Brenner,&nbsp;Jang Hwan Cho,&nbsp;Nicole M L Wong,&nbsp;Wilson W Wong\",\"doi\":\"10.1146/annurev-bioeng-062117-121147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellular immunotherapy holds great promise for the treatment of human disease. Clinical evidence suggests that T cell immunotherapies have the potential to combat cancers that evade traditional immunotherapy. Despite promising results, adverse effects leading to fatalities have left scientists seeking tighter control over these therapies, which is reflected in the growing body of synthetic biology literature focused on developing tightly controlled, context-independent parts. In addition, researchers are adapting these tools for other uses, such as for the treatment of autoimmune disease, HIV infection, and fungal interactions. We review this body of work and devote special attention to approaches that may lend themselves to the development of an \\\"ideal\\\" therapy: one that is safe, efficient, and easy to manufacture. We conclude with a look toward the future of immunotherapy: how synthetic biology can shift the paradigm from the treatment of disease to a focus on wellness and human health as a whole.</p>\",\"PeriodicalId\":50757,\"journal\":{\"name\":\"Annual Review of Biomedical Engineering\",\"volume\":\"20 \",\"pages\":\"95-118\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2018-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-bioeng-062117-121147\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-bioeng-062117-121147\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-bioeng-062117-121147","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 23

摘要

细胞免疫疗法对人类疾病的治疗有很大的希望。临床证据表明,T细胞免疫疗法有潜力对抗逃避传统免疫疗法的癌症。尽管取得了令人鼓舞的结果,但导致死亡的副作用使科学家们寻求对这些疗法进行更严格的控制,这反映在越来越多的合成生物学文献中,这些文献专注于开发严格控制的、与环境无关的部分。此外,研究人员正在将这些工具用于其他用途,例如治疗自身免疫性疾病、HIV感染和真菌相互作用。我们回顾了这些工作,并特别关注可能有助于开发“理想”疗法的方法:一种安全、有效、易于制造的方法。最后,我们展望了免疫治疗的未来:合成生物学如何将范式从疾病治疗转变为关注健康和人类整体健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic Biology: Immunotherapy by Design.

Cellular immunotherapy holds great promise for the treatment of human disease. Clinical evidence suggests that T cell immunotherapies have the potential to combat cancers that evade traditional immunotherapy. Despite promising results, adverse effects leading to fatalities have left scientists seeking tighter control over these therapies, which is reflected in the growing body of synthetic biology literature focused on developing tightly controlled, context-independent parts. In addition, researchers are adapting these tools for other uses, such as for the treatment of autoimmune disease, HIV infection, and fungal interactions. We review this body of work and devote special attention to approaches that may lend themselves to the development of an "ideal" therapy: one that is safe, efficient, and easy to manufacture. We conclude with a look toward the future of immunotherapy: how synthetic biology can shift the paradigm from the treatment of disease to a focus on wellness and human health as a whole.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Biomedical Engineering
Annual Review of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
18.80
自引率
0.00%
发文量
14
期刊介绍: Since 1999, the Annual Review of Biomedical Engineering has been capturing major advancements in the expansive realm of biomedical engineering. Encompassing biomechanics, biomaterials, computational genomics and proteomics, tissue engineering, biomonitoring, healthcare engineering, drug delivery, bioelectrical engineering, biochemical engineering, and biomedical imaging, the journal remains a vital resource. The current volume has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信