建筑环境中的多青曲霉亚属

IF 14.1 1区 生物学 Q1 MYCOLOGY
J.B. Tanney , C.M. Visagie , N. Yilmaz , K.A. Seifert
{"title":"建筑环境中的多青曲霉亚属","authors":"J.B. Tanney ,&nbsp;C.M. Visagie ,&nbsp;N. Yilmaz ,&nbsp;K.A. Seifert","doi":"10.1016/j.simyco.2017.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>Xerophilic fungi, especially <em>Aspergillus</em> species, are prevalent in the built environment. In this study, we employed a combined culture-independent (454-pyrosequencing) and culture-dependent (dilution-to-extinction) approach to investigate the mycobiota of indoor dust collected from 93 buildings in 12 countries worldwide. High and low water activity (a<sub>w</sub>) media were used to capture mesophile and xerophile biodiversity, resulting in the isolation of approximately 9 000 strains. Among these, 340 strains representing seven putative species in <em>Aspergillus</em> subgenus <em>Polypaecilum</em> were isolated, mostly from lowered a<sub>w</sub> media, and tentatively identified based on colony morphology and internal transcribed spacer rDNA region (ITS) barcodes. Further morphological study and phylogenetic analyses using sequences of ITS, β-tubulin (<em>BenA</em>), calmodulin (<em>CaM</em>), RNA polymerase II second largest subunit (<em>RPB2</em>), DNA topoisomerase 1 (<em>TOP1</em>), and a pre-mRNA processing protein homolog (<em>TSR1</em>) confirmed the isolation of seven species of subgenus <em>Polypaecilum</em>, including five novel species: <em>A</em>. <em>baarnensis</em>, <em>A</em>. <em>keratitidis</em>, <em>A</em>. <em>kalimae</em> sp. nov., <em>A</em>. <em>noonimiae</em> sp. nov., <em>A</em>. <em>thailandensis</em> sp. nov., <em>A</em>. <em>waynelawii</em> sp. nov., and <em>A</em>. <em>whitfieldii</em> sp. nov. Pyrosequencing detected six of the seven species isolated from house dust, as well as one additional species absent from the cultures isolated, and three clades representing potentially undescribed species. Species were typically found in house dust from subtropical and tropical climates, often in close proximity to the ocean or sea. The presence of subgenus <em>Polypaecilum</em>, a recently described clade of xerophilic/xerotolerant, halotolerant/halophilic, and potentially zoopathogenic species, within the built environment is noteworthy.</p></div>","PeriodicalId":22036,"journal":{"name":"Studies in Mycology","volume":null,"pages":null},"PeriodicalIF":14.1000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.simyco.2017.11.001","citationCount":"22","resultStr":"{\"title\":\"Aspergillus subgenus Polypaecilum from the built environment\",\"authors\":\"J.B. Tanney ,&nbsp;C.M. Visagie ,&nbsp;N. Yilmaz ,&nbsp;K.A. Seifert\",\"doi\":\"10.1016/j.simyco.2017.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Xerophilic fungi, especially <em>Aspergillus</em> species, are prevalent in the built environment. In this study, we employed a combined culture-independent (454-pyrosequencing) and culture-dependent (dilution-to-extinction) approach to investigate the mycobiota of indoor dust collected from 93 buildings in 12 countries worldwide. High and low water activity (a<sub>w</sub>) media were used to capture mesophile and xerophile biodiversity, resulting in the isolation of approximately 9 000 strains. Among these, 340 strains representing seven putative species in <em>Aspergillus</em> subgenus <em>Polypaecilum</em> were isolated, mostly from lowered a<sub>w</sub> media, and tentatively identified based on colony morphology and internal transcribed spacer rDNA region (ITS) barcodes. Further morphological study and phylogenetic analyses using sequences of ITS, β-tubulin (<em>BenA</em>), calmodulin (<em>CaM</em>), RNA polymerase II second largest subunit (<em>RPB2</em>), DNA topoisomerase 1 (<em>TOP1</em>), and a pre-mRNA processing protein homolog (<em>TSR1</em>) confirmed the isolation of seven species of subgenus <em>Polypaecilum</em>, including five novel species: <em>A</em>. <em>baarnensis</em>, <em>A</em>. <em>keratitidis</em>, <em>A</em>. <em>kalimae</em> sp. nov., <em>A</em>. <em>noonimiae</em> sp. nov., <em>A</em>. <em>thailandensis</em> sp. nov., <em>A</em>. <em>waynelawii</em> sp. nov., and <em>A</em>. <em>whitfieldii</em> sp. nov. Pyrosequencing detected six of the seven species isolated from house dust, as well as one additional species absent from the cultures isolated, and three clades representing potentially undescribed species. Species were typically found in house dust from subtropical and tropical climates, often in close proximity to the ocean or sea. The presence of subgenus <em>Polypaecilum</em>, a recently described clade of xerophilic/xerotolerant, halotolerant/halophilic, and potentially zoopathogenic species, within the built environment is noteworthy.</p></div>\",\"PeriodicalId\":22036,\"journal\":{\"name\":\"Studies in Mycology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.simyco.2017.11.001\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Mycology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166061617300477\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Mycology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166061617300477","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 22

摘要

嗜干真菌,尤其是曲霉,在建筑环境中普遍存在。在这项研究中,我们采用了培养独立(454焦磷酸测序)和培养依赖(稀释至消失)相结合的方法来调查从全球12个国家的93座建筑物收集的室内灰尘中的真菌群。利用高水活度和低水活度培养基捕获嗜中菌和嗜干菌的生物多样性,分离出约9000株菌株。其中,从多曲霉亚属(Aspergillus Polypaecilum)中分离到7个推定种340株菌株,主要来自于较低的培养基,并根据菌落形态和内部转录间隔rDNA区(ITS)条形码进行了初步鉴定。利用ITS序列、β-微管蛋白(BenA)、钙调蛋白(CaM)、RNA聚合酶II第二大亚基(RPB2)、DNA拓扑异构酶1 (TOP1)和mrna前加工蛋白同源物(TSR1)进行进一步的形态学研究和系统发育分析,证实了Polypaecilum亚属的7种分离,其中5种为新种。对从室内灰尘中分离出的7个种中的6个,以及在培养物中没有发现的另外1个种,以及3个分支,代表了可能未被描述的物种。该物种通常在亚热带和热带气候的室内灰尘中发现,通常靠近海洋或海洋。Polypaecilum亚属的存在是一个最近被描述的嗜干/耐干,耐盐/嗜盐和潜在动物致病物种的分支,在建筑环境中值得注意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aspergillus subgenus Polypaecilum from the built environment

Xerophilic fungi, especially Aspergillus species, are prevalent in the built environment. In this study, we employed a combined culture-independent (454-pyrosequencing) and culture-dependent (dilution-to-extinction) approach to investigate the mycobiota of indoor dust collected from 93 buildings in 12 countries worldwide. High and low water activity (aw) media were used to capture mesophile and xerophile biodiversity, resulting in the isolation of approximately 9 000 strains. Among these, 340 strains representing seven putative species in Aspergillus subgenus Polypaecilum were isolated, mostly from lowered aw media, and tentatively identified based on colony morphology and internal transcribed spacer rDNA region (ITS) barcodes. Further morphological study and phylogenetic analyses using sequences of ITS, β-tubulin (BenA), calmodulin (CaM), RNA polymerase II second largest subunit (RPB2), DNA topoisomerase 1 (TOP1), and a pre-mRNA processing protein homolog (TSR1) confirmed the isolation of seven species of subgenus Polypaecilum, including five novel species: A. baarnensis, A. keratitidis, A. kalimae sp. nov., A. noonimiae sp. nov., A. thailandensis sp. nov., A. waynelawii sp. nov., and A. whitfieldii sp. nov. Pyrosequencing detected six of the seven species isolated from house dust, as well as one additional species absent from the cultures isolated, and three clades representing potentially undescribed species. Species were typically found in house dust from subtropical and tropical climates, often in close proximity to the ocean or sea. The presence of subgenus Polypaecilum, a recently described clade of xerophilic/xerotolerant, halotolerant/halophilic, and potentially zoopathogenic species, within the built environment is noteworthy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Mycology
Studies in Mycology 生物-真菌学
CiteScore
35.60
自引率
3.00%
发文量
7
期刊介绍: The international journal Studies in Mycology focuses on advancing the understanding of filamentous fungi, yeasts, and various aspects of mycology. It publishes comprehensive systematic monographs as well as topical issues covering a wide range of subjects including biotechnology, ecology, molecular biology, pathology, and systematics. This Open-Access journal offers unrestricted access to its content. Each issue of Studies in Mycology consists of around 5 to 6 papers, either in the form of monographs or special focused topics. Unlike traditional length restrictions, the journal encourages submissions of manuscripts with a minimum of 50 A4 pages in print. This ensures a thorough exploration and presentation of the research findings, maximizing the depth of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信