Thor Axtmann Garcia, Vasilios Deligiannakis, Candice Forrester, Ido Levy, Maria C Tamargo
{"title":"用于 II-VI 异质结构的 Bi2Se3 范德瓦耳斯虚拟基底。","authors":"Thor Axtmann Garcia, Vasilios Deligiannakis, Candice Forrester, Ido Levy, Maria C Tamargo","doi":"10.1002/pssb.201700275","DOIUrl":null,"url":null,"abstract":"<p><p>We report on the growth and characterization of optical quality multiple quantum well structures of Zn <i><sub>x</sub></i> Cd<sub>1-</sub><i><sub>x</sub></i> Se/Zn <i><sub>x</sub></i> Cd <i><sub>y</sub></i> Mg<sub>1-</sub><i><sub>x</sub></i><sub>-</sub><i><sub>y</sub></i> Se on an ultra-thin Bi<sub>2</sub>Se<sub>3</sub>/CdTe virtual substrate on c-plane Al<sub>2</sub>O<sub>3</sub> (sapphire). Excellent quality highly oriented films grown along the (111) direction were achieved as evidenced by reflection high energy electron diffraction and X-ray diffraction studies. We also observed room temperature and 77 K photoluminescence emission with peak energies at 77 K of 2.407 eV and linewidths of 56 meV comparable to those achieved on structures grown on InP. Exfoliation of the structures is also possible due to the van der Waals bonding of Bi<sub>2</sub>Se<sub>3</sub>. Exfoliated (substrate free) films exhibit photoluminescence emission nearly identical to that of the supported film. Additionally, contactless electroreflectance measurements show good agreement with simulations of the multiple quantum well structure as well as evidence of excited state levels. These results open new avenues of research for substrate independent epitaxy and the possibility of ultra-thin electronics.</p>","PeriodicalId":90039,"journal":{"name":"Physica status solidi. B, Basic solid state physics : PSS","volume":"254 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5697755/pdf/nihms916667.pdf","citationCount":"0","resultStr":"{\"title\":\"Bi<sub>2</sub>Se<sub>3</sub> van der Waals Virtual Substrates for II-VI Heterostructures.\",\"authors\":\"Thor Axtmann Garcia, Vasilios Deligiannakis, Candice Forrester, Ido Levy, Maria C Tamargo\",\"doi\":\"10.1002/pssb.201700275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report on the growth and characterization of optical quality multiple quantum well structures of Zn <i><sub>x</sub></i> Cd<sub>1-</sub><i><sub>x</sub></i> Se/Zn <i><sub>x</sub></i> Cd <i><sub>y</sub></i> Mg<sub>1-</sub><i><sub>x</sub></i><sub>-</sub><i><sub>y</sub></i> Se on an ultra-thin Bi<sub>2</sub>Se<sub>3</sub>/CdTe virtual substrate on c-plane Al<sub>2</sub>O<sub>3</sub> (sapphire). Excellent quality highly oriented films grown along the (111) direction were achieved as evidenced by reflection high energy electron diffraction and X-ray diffraction studies. We also observed room temperature and 77 K photoluminescence emission with peak energies at 77 K of 2.407 eV and linewidths of 56 meV comparable to those achieved on structures grown on InP. Exfoliation of the structures is also possible due to the van der Waals bonding of Bi<sub>2</sub>Se<sub>3</sub>. Exfoliated (substrate free) films exhibit photoluminescence emission nearly identical to that of the supported film. Additionally, contactless electroreflectance measurements show good agreement with simulations of the multiple quantum well structure as well as evidence of excited state levels. These results open new avenues of research for substrate independent epitaxy and the possibility of ultra-thin electronics.</p>\",\"PeriodicalId\":90039,\"journal\":{\"name\":\"Physica status solidi. B, Basic solid state physics : PSS\",\"volume\":\"254 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5697755/pdf/nihms916667.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica status solidi. B, Basic solid state physics : PSS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssb.201700275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/8/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica status solidi. B, Basic solid state physics : PSS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssb.201700275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们报告了在 c 平面 Al2O3(蓝宝石)上的超薄 Bi2Se3/CdTe 虚拟衬底上生长 Zn x Cd1-x Se/Zn x Cd y Mg1-x-y Se 的光学质量多量子阱结构及其特性。通过反射高能电子衍射和 X 射线衍射研究,我们获得了沿 (111) 方向生长的高质量高取向薄膜。我们还观察到室温和 77 K 的光致发光,77 K 时的峰值能量为 2.407 eV,线宽为 56 meV,与在 InP 上生长的结构相当。由于 Bi2Se3 的范德华键作用,这些结构也可以剥离。剥离(无衬底)薄膜的光致发光发射与支撑薄膜几乎相同。此外,非接触式电反射测量结果显示与多量子阱结构的模拟结果以及激发态水平的证据十分吻合。这些结果为独立于衬底的外延和超薄电子器件的可能性开辟了新的研究途径。
Bi2Se3 van der Waals Virtual Substrates for II-VI Heterostructures.
We report on the growth and characterization of optical quality multiple quantum well structures of Zn x Cd1-x Se/Zn x Cd y Mg1-x-y Se on an ultra-thin Bi2Se3/CdTe virtual substrate on c-plane Al2O3 (sapphire). Excellent quality highly oriented films grown along the (111) direction were achieved as evidenced by reflection high energy electron diffraction and X-ray diffraction studies. We also observed room temperature and 77 K photoluminescence emission with peak energies at 77 K of 2.407 eV and linewidths of 56 meV comparable to those achieved on structures grown on InP. Exfoliation of the structures is also possible due to the van der Waals bonding of Bi2Se3. Exfoliated (substrate free) films exhibit photoluminescence emission nearly identical to that of the supported film. Additionally, contactless electroreflectance measurements show good agreement with simulations of the multiple quantum well structure as well as evidence of excited state levels. These results open new avenues of research for substrate independent epitaxy and the possibility of ultra-thin electronics.