Ana Herrero, Mariana Reis-Cardoso, Iñaki Jiménez-Gómez, Carolanne Doherty, Lorena Agudo-Ibañez, Adán Pinto, Fernando Calvo, Walter Kolch, Piero Crespo, David Matallanas
{"title":"利用工程位点特异性交换因子表征HRas局部信号转导网络。","authors":"Ana Herrero, Mariana Reis-Cardoso, Iñaki Jiménez-Gómez, Carolanne Doherty, Lorena Agudo-Ibañez, Adán Pinto, Fernando Calvo, Walter Kolch, Piero Crespo, David Matallanas","doi":"10.1080/21541248.2017.1406434","DOIUrl":null,"url":null,"abstract":"<p><p>Ras GTPases convey signals from different types of membranes. At these locations, different Ras isoforms, interactors and regulators generate different biochemical signals and biological outputs. The study of Ras localisation-specific signal transduction networks has been hampered by our inability to specifically activate each of these Ras pools. Here, we describe a new set of site-specific tethered exchange factors, engineered by fusing the RasGRF1 CDC25 domain to sub-localisation-defining cues, whereby Ras pools at specific locations can be precisely activated. We show that the CDC25 domain has a high specificity for activating HRas but not NRas and KRas. This unexpected finding means that our constructs mainly activate endogenous HRas. Hence, their use enabled us to identify distinct pathways regulated by HRas in endomembranes and plasma membrane microdomains. Importantly, these new constructs unveil different patterns of HRas activity specified by their subcellular localisation. Overall, the targeted GEFs described herein constitute ideal tools for dissecting spatially-defined HRas biochemical and biological functions.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":"11 5","pages":"371-383"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541248.2017.1406434","citationCount":"11","resultStr":"{\"title\":\"Characterisation of HRas local signal transduction networks using engineered site-specific exchange factors.\",\"authors\":\"Ana Herrero, Mariana Reis-Cardoso, Iñaki Jiménez-Gómez, Carolanne Doherty, Lorena Agudo-Ibañez, Adán Pinto, Fernando Calvo, Walter Kolch, Piero Crespo, David Matallanas\",\"doi\":\"10.1080/21541248.2017.1406434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ras GTPases convey signals from different types of membranes. At these locations, different Ras isoforms, interactors and regulators generate different biochemical signals and biological outputs. The study of Ras localisation-specific signal transduction networks has been hampered by our inability to specifically activate each of these Ras pools. Here, we describe a new set of site-specific tethered exchange factors, engineered by fusing the RasGRF1 CDC25 domain to sub-localisation-defining cues, whereby Ras pools at specific locations can be precisely activated. We show that the CDC25 domain has a high specificity for activating HRas but not NRas and KRas. This unexpected finding means that our constructs mainly activate endogenous HRas. Hence, their use enabled us to identify distinct pathways regulated by HRas in endomembranes and plasma membrane microdomains. Importantly, these new constructs unveil different patterns of HRas activity specified by their subcellular localisation. Overall, the targeted GEFs described herein constitute ideal tools for dissecting spatially-defined HRas biochemical and biological functions.</p>\",\"PeriodicalId\":22139,\"journal\":{\"name\":\"Small GTPases\",\"volume\":\"11 5\",\"pages\":\"371-383\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21541248.2017.1406434\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small GTPases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21541248.2017.1406434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small GTPases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21541248.2017.1406434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Characterisation of HRas local signal transduction networks using engineered site-specific exchange factors.
Ras GTPases convey signals from different types of membranes. At these locations, different Ras isoforms, interactors and regulators generate different biochemical signals and biological outputs. The study of Ras localisation-specific signal transduction networks has been hampered by our inability to specifically activate each of these Ras pools. Here, we describe a new set of site-specific tethered exchange factors, engineered by fusing the RasGRF1 CDC25 domain to sub-localisation-defining cues, whereby Ras pools at specific locations can be precisely activated. We show that the CDC25 domain has a high specificity for activating HRas but not NRas and KRas. This unexpected finding means that our constructs mainly activate endogenous HRas. Hence, their use enabled us to identify distinct pathways regulated by HRas in endomembranes and plasma membrane microdomains. Importantly, these new constructs unveil different patterns of HRas activity specified by their subcellular localisation. Overall, the targeted GEFs described herein constitute ideal tools for dissecting spatially-defined HRas biochemical and biological functions.