{"title":"棘鱼组织的荧光原位杂交(FISH)方法。","authors":"Noelle James, Xiaochen Liu, Alison Bell","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Threespine stickleback are an important model for behaviour and evolutionary studies. A growing number of quantitative trait loci (QTL) and gene expression studies are identifying genes related to ecologically important traits in sticklebacks. In order to visualize the expression of candidate genes, we developed a fluorescence <i>in situ</i> hybridization (FISH) protocol.</p><p><strong>Methods: </strong>We present a protocol for FISH on fresh or flash-frozen dissected tissue, using either cryo- or paraffin embedding. The protocol covers probe design guidelines and synthesis, sample embedding, sectioning, and the hybridization process. The protocol is optimized for brain tissue. Key steps for modifying the protocol for other tissues are noted.</p><p><strong>Results: </strong>The FISH protocol resulted in specific labelling under all combinations of dissection and embedding conditions. Paraffin embedding preserved morphology better than cryo-embedding. We provide representative results showing the expression of glial fibrillary acidic protein (<i>GFAP</i>), oxytocin receptor (<i>OXTR</i>), and tyrosine hydroxylase (<i>TH</i>) in the brain.</p>","PeriodicalId":50469,"journal":{"name":"Evolutionary Ecology Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5642962/pdf/nihms869359.pdf","citationCount":"0","resultStr":"{\"title\":\"A fluorescence <i>in situ</i> hybridization (FISH) protocol for stickleback tissue.\",\"authors\":\"Noelle James, Xiaochen Liu, Alison Bell\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Threespine stickleback are an important model for behaviour and evolutionary studies. A growing number of quantitative trait loci (QTL) and gene expression studies are identifying genes related to ecologically important traits in sticklebacks. In order to visualize the expression of candidate genes, we developed a fluorescence <i>in situ</i> hybridization (FISH) protocol.</p><p><strong>Methods: </strong>We present a protocol for FISH on fresh or flash-frozen dissected tissue, using either cryo- or paraffin embedding. The protocol covers probe design guidelines and synthesis, sample embedding, sectioning, and the hybridization process. The protocol is optimized for brain tissue. Key steps for modifying the protocol for other tissues are noted.</p><p><strong>Results: </strong>The FISH protocol resulted in specific labelling under all combinations of dissection and embedding conditions. Paraffin embedding preserved morphology better than cryo-embedding. We provide representative results showing the expression of glial fibrillary acidic protein (<i>GFAP</i>), oxytocin receptor (<i>OXTR</i>), and tyrosine hydroxylase (<i>TH</i>) in the brain.</p>\",\"PeriodicalId\":50469,\"journal\":{\"name\":\"Evolutionary Ecology Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5642962/pdf/nihms869359.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Ecology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Ecology Research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
A fluorescence in situ hybridization (FISH) protocol for stickleback tissue.
Background: Threespine stickleback are an important model for behaviour and evolutionary studies. A growing number of quantitative trait loci (QTL) and gene expression studies are identifying genes related to ecologically important traits in sticklebacks. In order to visualize the expression of candidate genes, we developed a fluorescence in situ hybridization (FISH) protocol.
Methods: We present a protocol for FISH on fresh or flash-frozen dissected tissue, using either cryo- or paraffin embedding. The protocol covers probe design guidelines and synthesis, sample embedding, sectioning, and the hybridization process. The protocol is optimized for brain tissue. Key steps for modifying the protocol for other tissues are noted.
Results: The FISH protocol resulted in specific labelling under all combinations of dissection and embedding conditions. Paraffin embedding preserved morphology better than cryo-embedding. We provide representative results showing the expression of glial fibrillary acidic protein (GFAP), oxytocin receptor (OXTR), and tyrosine hydroxylase (TH) in the brain.
期刊介绍:
Evolutionary Ecology Research publishes original research contributions focusing on the overlap between ecology
and evolution. Papers may treat any taxon or be general. They may be empirical, theoretical or a combination of the two.
EER prefers conceptual contributions that take intellectual risks or that test ideas.