{"title":"快速循环的GTPases。","authors":"Pontus Aspenström","doi":"10.1080/21541248.2017.1391365","DOIUrl":null,"url":null,"abstract":"<p><p>The Rho GTPases were discovered more than 30 years ago, and they were for a long time considered to follow simple cycling between GDP-bound and GTP-bound conformations, as for the Ras subfamily of small GTPases. The Rho GTPases consist of 20 members, but at least 10 of these do not follow this classical GTPase cycle. Thus, based on their kinetic properties, these Rho GTPases can instead be classified as atypical. Some of these atypical Rho GTPases do not hydrolyze GTP, and some have significantly increased intrinsic GDP/GTP exchange activity. This review focuses on this latter category of atypical Rho GTPases, the so-called 'fast-cycling' Rho GTPases. The different members of these fast-cycling atypical Rho GTPases are described in more detail here, along with their potential regulatory mechanisms. Finally, some insights are provided into the involvement of the atypical Rho GTPases in human pathologies.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":" ","pages":"248-255"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541248.2017.1391365","citationCount":"33","resultStr":"{\"title\":\"Fast-cycling Rho GTPases.\",\"authors\":\"Pontus Aspenström\",\"doi\":\"10.1080/21541248.2017.1391365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Rho GTPases were discovered more than 30 years ago, and they were for a long time considered to follow simple cycling between GDP-bound and GTP-bound conformations, as for the Ras subfamily of small GTPases. The Rho GTPases consist of 20 members, but at least 10 of these do not follow this classical GTPase cycle. Thus, based on their kinetic properties, these Rho GTPases can instead be classified as atypical. Some of these atypical Rho GTPases do not hydrolyze GTP, and some have significantly increased intrinsic GDP/GTP exchange activity. This review focuses on this latter category of atypical Rho GTPases, the so-called 'fast-cycling' Rho GTPases. The different members of these fast-cycling atypical Rho GTPases are described in more detail here, along with their potential regulatory mechanisms. Finally, some insights are provided into the involvement of the atypical Rho GTPases in human pathologies.</p>\",\"PeriodicalId\":22139,\"journal\":{\"name\":\"Small GTPases\",\"volume\":\" \",\"pages\":\"248-255\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21541248.2017.1391365\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small GTPases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21541248.2017.1391365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small GTPases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21541248.2017.1391365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The Rho GTPases were discovered more than 30 years ago, and they were for a long time considered to follow simple cycling between GDP-bound and GTP-bound conformations, as for the Ras subfamily of small GTPases. The Rho GTPases consist of 20 members, but at least 10 of these do not follow this classical GTPase cycle. Thus, based on their kinetic properties, these Rho GTPases can instead be classified as atypical. Some of these atypical Rho GTPases do not hydrolyze GTP, and some have significantly increased intrinsic GDP/GTP exchange activity. This review focuses on this latter category of atypical Rho GTPases, the so-called 'fast-cycling' Rho GTPases. The different members of these fast-cycling atypical Rho GTPases are described in more detail here, along with their potential regulatory mechanisms. Finally, some insights are provided into the involvement of the atypical Rho GTPases in human pathologies.