{"title":"成纤维细胞在心肌重构中的活化机制。","authors":"Arti V Shinde, Nikolaos G Frangogiannis","doi":"10.1007/s40139-017-0132-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Activated fibroblasts are critically implicated in repair and remodeling of the injured heart. This manuscript discusses recent progress in the cell biology of fibroblasts in the infarcted and remodeling myocardium, highlighting advances in understanding the origin, function and mechanisms of activation of these cells.</p><p><strong>Recent findings: </strong>Following myocardial injury, fibroblasts undergo activation and myofibroblast transdifferentiation. Recently published studies have suggested that most activated myofibroblasts in the infarcted and pressure-overloaded hearts are derived from resident fibroblast populations. In the healing infarct, fibroblasts undergo dynamic phenotypic alterations in response to changes in the cytokine milieu and in the composition of the extracellular matrix. Fibroblasts do not simply serve as matrix-producing cells, but may also regulate inflammation, modulate cardiomyocyte survival and function, mediate angiogenesis, and contribute to phagocytosis of dead cells.</p><p><strong>Summary: </strong>In the injured myocardium, fibroblasts are derived predominantly from resident populations and serve a wide range of functions.</p>","PeriodicalId":37014,"journal":{"name":"Current Pathobiology Reports","volume":"5 2","pages":"145-152"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40139-017-0132-z","citationCount":"37","resultStr":"{\"title\":\"Mechanisms of Fibroblast Activation in the Remodeling Myocardium.\",\"authors\":\"Arti V Shinde, Nikolaos G Frangogiannis\",\"doi\":\"10.1007/s40139-017-0132-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Activated fibroblasts are critically implicated in repair and remodeling of the injured heart. This manuscript discusses recent progress in the cell biology of fibroblasts in the infarcted and remodeling myocardium, highlighting advances in understanding the origin, function and mechanisms of activation of these cells.</p><p><strong>Recent findings: </strong>Following myocardial injury, fibroblasts undergo activation and myofibroblast transdifferentiation. Recently published studies have suggested that most activated myofibroblasts in the infarcted and pressure-overloaded hearts are derived from resident fibroblast populations. In the healing infarct, fibroblasts undergo dynamic phenotypic alterations in response to changes in the cytokine milieu and in the composition of the extracellular matrix. Fibroblasts do not simply serve as matrix-producing cells, but may also regulate inflammation, modulate cardiomyocyte survival and function, mediate angiogenesis, and contribute to phagocytosis of dead cells.</p><p><strong>Summary: </strong>In the injured myocardium, fibroblasts are derived predominantly from resident populations and serve a wide range of functions.</p>\",\"PeriodicalId\":37014,\"journal\":{\"name\":\"Current Pathobiology Reports\",\"volume\":\"5 2\",\"pages\":\"145-152\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40139-017-0132-z\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Pathobiology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40139-017-0132-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/4/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pathobiology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40139-017-0132-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/4/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Mechanisms of Fibroblast Activation in the Remodeling Myocardium.
Purpose of review: Activated fibroblasts are critically implicated in repair and remodeling of the injured heart. This manuscript discusses recent progress in the cell biology of fibroblasts in the infarcted and remodeling myocardium, highlighting advances in understanding the origin, function and mechanisms of activation of these cells.
Recent findings: Following myocardial injury, fibroblasts undergo activation and myofibroblast transdifferentiation. Recently published studies have suggested that most activated myofibroblasts in the infarcted and pressure-overloaded hearts are derived from resident fibroblast populations. In the healing infarct, fibroblasts undergo dynamic phenotypic alterations in response to changes in the cytokine milieu and in the composition of the extracellular matrix. Fibroblasts do not simply serve as matrix-producing cells, but may also regulate inflammation, modulate cardiomyocyte survival and function, mediate angiogenesis, and contribute to phagocytosis of dead cells.
Summary: In the injured myocardium, fibroblasts are derived predominantly from resident populations and serve a wide range of functions.
期刊介绍:
This journal aims to offer expert review articles on the most important recent research pertaining to biological mechanisms underlying disease, including etiology, pathogenesis, and the clinical manifestations of cellular alteration. By providing clear, insightful, balanced contributions, the journal intends to serve those for whom the elucidation of new techniques and technologies related to pathobiology is essential. We accomplish this aim by appointing international authorities to serve as Section Editors in key subject areas across the field. Section Editors select topics for which leading experts contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, highlighted by annotated reference lists. An Editorial Board of more than 20 internationally diverse members reviews the annual table of contents, ensures that topics include emerging research, and suggests topics of special importance to their country/region. Topics covered may include autophagy, cancer stem cells, induced pluripotential stem cells (iPS cells), inflammation and cancer, matrix pathobiology, miRNA in pathobiology, mitochondrial dysfunction/diseases, and myofibroblast.