Samantha M Bradford, Eric R Mikula, Dongyul Chai, Donald J Brown, Tibor Juhasz, James V Jester
{"title":"定制的非线性光学交联(NLO CXL)装置能够在离体兔角膜中产生机械硬化。","authors":"Samantha M Bradford, Eric R Mikula, Dongyul Chai, Donald J Brown, Tibor Juhasz, James V Jester","doi":"10.1364/BOE.8.004788","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to develop and test a nonlinear optical device to photoactivate riboflavin to produce spatially controlled collagen crosslinking and mechanical stiffening within the cornea. A nonlinear optical device using a variable numerical aperture objective was built and coupled to a Chameleon femtosecond laser. Ex vivo rabbit eyes were then saturated with riboflavin and scanned with various scanning parameters over a 4 mm area in the central cornea. Effectiveness of NLO CXL was assessed by evaluating corneal collagen auto fluorescence (CAF). To determine mechanical stiffening effects, corneas were removed from the eye and subjected to indentation testing using a 1 mm diameter probe and force transducer. NLO CXL was also compared to standard UVA CXL. The NLO CXL delivery device was able to induce a significant increase in corneal stiffness, comparable to the increase produced by standard UVA CXL.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":" ","pages":"4788-4797"},"PeriodicalIF":2.9000,"publicationDate":"2017-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1364/BOE.8.004788","citationCount":"10","resultStr":"{\"title\":\"Custom built nonlinear optical crosslinking (NLO CXL) device capable of producing mechanical stiffening in ex vivo rabbit corneas.\",\"authors\":\"Samantha M Bradford, Eric R Mikula, Dongyul Chai, Donald J Brown, Tibor Juhasz, James V Jester\",\"doi\":\"10.1364/BOE.8.004788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study was to develop and test a nonlinear optical device to photoactivate riboflavin to produce spatially controlled collagen crosslinking and mechanical stiffening within the cornea. A nonlinear optical device using a variable numerical aperture objective was built and coupled to a Chameleon femtosecond laser. Ex vivo rabbit eyes were then saturated with riboflavin and scanned with various scanning parameters over a 4 mm area in the central cornea. Effectiveness of NLO CXL was assessed by evaluating corneal collagen auto fluorescence (CAF). To determine mechanical stiffening effects, corneas were removed from the eye and subjected to indentation testing using a 1 mm diameter probe and force transducer. NLO CXL was also compared to standard UVA CXL. The NLO CXL delivery device was able to induce a significant increase in corneal stiffness, comparable to the increase produced by standard UVA CXL.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\" \",\"pages\":\"4788-4797\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2017-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1364/BOE.8.004788\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.8.004788\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.8.004788","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Custom built nonlinear optical crosslinking (NLO CXL) device capable of producing mechanical stiffening in ex vivo rabbit corneas.
The purpose of this study was to develop and test a nonlinear optical device to photoactivate riboflavin to produce spatially controlled collagen crosslinking and mechanical stiffening within the cornea. A nonlinear optical device using a variable numerical aperture objective was built and coupled to a Chameleon femtosecond laser. Ex vivo rabbit eyes were then saturated with riboflavin and scanned with various scanning parameters over a 4 mm area in the central cornea. Effectiveness of NLO CXL was assessed by evaluating corneal collagen auto fluorescence (CAF). To determine mechanical stiffening effects, corneas were removed from the eye and subjected to indentation testing using a 1 mm diameter probe and force transducer. NLO CXL was also compared to standard UVA CXL. The NLO CXL delivery device was able to induce a significant increase in corneal stiffness, comparable to the increase produced by standard UVA CXL.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.