比较视觉互动标签与主动学习:一项实验研究。

IF 6.5 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jurgen Bernard, Marco Hutter, Matthias Zeppelzauer, Dieter Fellner, Michael Sedlmair
{"title":"比较视觉互动标签与主动学习:一项实验研究。","authors":"Jurgen Bernard,&nbsp;Marco Hutter,&nbsp;Matthias Zeppelzauer,&nbsp;Dieter Fellner,&nbsp;Michael Sedlmair","doi":"10.1109/TVCG.2017.2744818","DOIUrl":null,"url":null,"abstract":"<p><p>Labeling data instances is an important task in machine learning and visual analytics. Both fields provide a broad set of labeling strategies, whereby machine learning (and in particular active learning) follows a rather model-centered approach and visual analytics employs rather user-centered approaches (visual-interactive labeling). Both approaches have individual strengths and weaknesses. In this work, we conduct an experiment with three parts to assess and compare the performance of these different labeling strategies. In our study, we (1) identify different visual labeling strategies for user-centered labeling, (2) investigate strengths and weaknesses of labeling strategies for different labeling tasks and task complexities, and (3) shed light on the effect of using different visual encodings to guide the visual-interactive labeling process. We further compare labeling of single versus multiple instances at a time, and quantify the impact on efficiency. We systematically compare the performance of visual interactive labeling with that of active learning. Our main findings are that visual-interactive labeling can outperform active learning, given the condition that dimension reduction separates well the class distributions. Moreover, using dimension reduction in combination with additional visual encodings that expose the internal state of the learning model turns out to improve the performance of visual-interactive labeling.</p>","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":"24 1","pages":"298-308"},"PeriodicalIF":6.5000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TVCG.2017.2744818","citationCount":"121","resultStr":"{\"title\":\"Comparing Visual-Interactive Labeling with Active Learning: An Experimental Study.\",\"authors\":\"Jurgen Bernard,&nbsp;Marco Hutter,&nbsp;Matthias Zeppelzauer,&nbsp;Dieter Fellner,&nbsp;Michael Sedlmair\",\"doi\":\"10.1109/TVCG.2017.2744818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Labeling data instances is an important task in machine learning and visual analytics. Both fields provide a broad set of labeling strategies, whereby machine learning (and in particular active learning) follows a rather model-centered approach and visual analytics employs rather user-centered approaches (visual-interactive labeling). Both approaches have individual strengths and weaknesses. In this work, we conduct an experiment with three parts to assess and compare the performance of these different labeling strategies. In our study, we (1) identify different visual labeling strategies for user-centered labeling, (2) investigate strengths and weaknesses of labeling strategies for different labeling tasks and task complexities, and (3) shed light on the effect of using different visual encodings to guide the visual-interactive labeling process. We further compare labeling of single versus multiple instances at a time, and quantify the impact on efficiency. We systematically compare the performance of visual interactive labeling with that of active learning. Our main findings are that visual-interactive labeling can outperform active learning, given the condition that dimension reduction separates well the class distributions. Moreover, using dimension reduction in combination with additional visual encodings that expose the internal state of the learning model turns out to improve the performance of visual-interactive labeling.</p>\",\"PeriodicalId\":13376,\"journal\":{\"name\":\"IEEE Transactions on Visualization and Computer Graphics\",\"volume\":\"24 1\",\"pages\":\"298-308\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TVCG.2017.2744818\",\"citationCount\":\"121\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Visualization and Computer Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2017.2744818\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/8/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Visualization and Computer Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TVCG.2017.2744818","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 121

摘要

标记数据实例是机器学习和可视化分析中的一项重要任务。这两个领域都提供了一套广泛的标签策略,其中机器学习(特别是主动学习)遵循以模型为中心的方法,而视觉分析采用以用户为中心的方法(视觉交互式标签)。这两种方法都有各自的优缺点。在这项工作中,我们进行了三个部分的实验,以评估和比较这些不同的标签策略的性能。在本研究中,我们(1)确定了以用户为中心的标注的不同视觉标注策略;(2)研究了不同标注任务和任务复杂性下标注策略的优缺点;(3)揭示了使用不同的视觉编码来指导视觉交互标注过程的效果。我们进一步比较了一次标记单个和多个实例的情况,并量化了对效率的影响。我们系统地比较了视觉交互标注与主动学习的性能。我们的主要发现是,在降维很好地分离了类分布的条件下,视觉交互式标签可以优于主动学习。此外,将降维与暴露学习模型内部状态的附加视觉编码相结合,可以提高视觉交互标记的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing Visual-Interactive Labeling with Active Learning: An Experimental Study.

Labeling data instances is an important task in machine learning and visual analytics. Both fields provide a broad set of labeling strategies, whereby machine learning (and in particular active learning) follows a rather model-centered approach and visual analytics employs rather user-centered approaches (visual-interactive labeling). Both approaches have individual strengths and weaknesses. In this work, we conduct an experiment with three parts to assess and compare the performance of these different labeling strategies. In our study, we (1) identify different visual labeling strategies for user-centered labeling, (2) investigate strengths and weaknesses of labeling strategies for different labeling tasks and task complexities, and (3) shed light on the effect of using different visual encodings to guide the visual-interactive labeling process. We further compare labeling of single versus multiple instances at a time, and quantify the impact on efficiency. We systematically compare the performance of visual interactive labeling with that of active learning. Our main findings are that visual-interactive labeling can outperform active learning, given the condition that dimension reduction separates well the class distributions. Moreover, using dimension reduction in combination with additional visual encodings that expose the internal state of the learning model turns out to improve the performance of visual-interactive labeling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics 工程技术-计算机:软件工程
CiteScore
10.40
自引率
19.20%
发文量
946
审稿时长
4.5 months
期刊介绍: TVCG is a scholarly, archival journal published monthly. Its Editorial Board strives to publish papers that present important research results and state-of-the-art seminal papers in computer graphics, visualization, and virtual reality. Specific topics include, but are not limited to: rendering technologies; geometric modeling and processing; shape analysis; graphics hardware; animation and simulation; perception, interaction and user interfaces; haptics; computational photography; high-dynamic range imaging and display; user studies and evaluation; biomedical visualization; volume visualization and graphics; visual analytics for machine learning; topology-based visualization; visual programming and software visualization; visualization in data science; virtual reality, augmented reality and mixed reality; advanced display technology, (e.g., 3D, immersive and multi-modal displays); applications of computer graphics and visualization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信