LDSScanner:高维数据集中低维结构的探索性分析。

IF 6.5 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jiazhi Xia, Fenjin Ye, Wei Chen, Yusi Wang, Weifeng Chen, Yuxin Ma, Anthony K H Tung
{"title":"LDSScanner:高维数据集中低维结构的探索性分析。","authors":"Jiazhi Xia,&nbsp;Fenjin Ye,&nbsp;Wei Chen,&nbsp;Yusi Wang,&nbsp;Weifeng Chen,&nbsp;Yuxin Ma,&nbsp;Anthony K H Tung","doi":"10.1109/TVCG.2017.2744098","DOIUrl":null,"url":null,"abstract":"<p><p>Many approaches for analyzing a high-dimensional dataset assume that the dataset contains specific structures, e.g., clusters in linear subspaces or non-linear manifolds. This yields a trial-and-error process to verify the appropriate model and parameters. This paper contributes an exploratory interface that supports visual identification of low-dimensional structures in a high-dimensional dataset, and facilitates the optimized selection of data models and configurations. Our key idea is to abstract a set of global and local feature descriptors from the neighborhood graph-based representation of the latent low-dimensional structure, such as pairwise geodesic distance (GD) among points and pairwise local tangent space divergence (LTSD) among pointwise local tangent spaces (LTS). We propose a new LTSD-GD view, which is constructed by mapping LTSD and GD to the axis and axis using 1D multidimensional scaling, respectively. Unlike traditional dimensionality reduction methods that preserve various kinds of distances among points, the LTSD-GD view presents the distribution of pointwise LTS ( axis) and the variation of LTS in structures (the combination of axis and axis). We design and implement a suite of visual tools for navigating and reasoning about intrinsic structures of a high-dimensional dataset. Three case studies verify the effectiveness of our approach.</p>","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":"24 1","pages":"236-245"},"PeriodicalIF":6.5000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TVCG.2017.2744098","citationCount":"58","resultStr":"{\"title\":\"LDSScanner: Exploratory Analysis of Low-Dimensional Structures in High-Dimensional Datasets.\",\"authors\":\"Jiazhi Xia,&nbsp;Fenjin Ye,&nbsp;Wei Chen,&nbsp;Yusi Wang,&nbsp;Weifeng Chen,&nbsp;Yuxin Ma,&nbsp;Anthony K H Tung\",\"doi\":\"10.1109/TVCG.2017.2744098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many approaches for analyzing a high-dimensional dataset assume that the dataset contains specific structures, e.g., clusters in linear subspaces or non-linear manifolds. This yields a trial-and-error process to verify the appropriate model and parameters. This paper contributes an exploratory interface that supports visual identification of low-dimensional structures in a high-dimensional dataset, and facilitates the optimized selection of data models and configurations. Our key idea is to abstract a set of global and local feature descriptors from the neighborhood graph-based representation of the latent low-dimensional structure, such as pairwise geodesic distance (GD) among points and pairwise local tangent space divergence (LTSD) among pointwise local tangent spaces (LTS). We propose a new LTSD-GD view, which is constructed by mapping LTSD and GD to the axis and axis using 1D multidimensional scaling, respectively. Unlike traditional dimensionality reduction methods that preserve various kinds of distances among points, the LTSD-GD view presents the distribution of pointwise LTS ( axis) and the variation of LTS in structures (the combination of axis and axis). We design and implement a suite of visual tools for navigating and reasoning about intrinsic structures of a high-dimensional dataset. Three case studies verify the effectiveness of our approach.</p>\",\"PeriodicalId\":13376,\"journal\":{\"name\":\"IEEE Transactions on Visualization and Computer Graphics\",\"volume\":\"24 1\",\"pages\":\"236-245\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TVCG.2017.2744098\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Visualization and Computer Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2017.2744098\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/8/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Visualization and Computer Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TVCG.2017.2744098","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 58

摘要

许多分析高维数据集的方法都假设数据集包含特定的结构,例如,线性子空间中的聚类或非线性流形。这将产生一个反复试验的过程,以验证适当的模型和参数。本文提供了一个探索性界面,支持高维数据集中低维结构的可视化识别,并促进了数据模型和配置的优化选择。我们的关键思想是从基于邻域图的潜在低维结构表示中抽象出一组全局和局部特征描述子,例如点之间的成对测地线距离(GD)和点之间的成对局部切线空间散度(LTSD)。我们提出了一种新的LTSD-GD视图,该视图使用一维多维尺度分别将LTSD和GD映射到轴和轴上。与传统降维方法保留各种点之间的距离不同,LTSD-GD视图呈现了点向LTS(轴)的分布和LTS在结构中的变化(轴和轴的组合)。我们设计并实现了一套可视化工具,用于导航和推理高维数据集的内在结构。三个案例研究验证了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LDSScanner: Exploratory Analysis of Low-Dimensional Structures in High-Dimensional Datasets.

Many approaches for analyzing a high-dimensional dataset assume that the dataset contains specific structures, e.g., clusters in linear subspaces or non-linear manifolds. This yields a trial-and-error process to verify the appropriate model and parameters. This paper contributes an exploratory interface that supports visual identification of low-dimensional structures in a high-dimensional dataset, and facilitates the optimized selection of data models and configurations. Our key idea is to abstract a set of global and local feature descriptors from the neighborhood graph-based representation of the latent low-dimensional structure, such as pairwise geodesic distance (GD) among points and pairwise local tangent space divergence (LTSD) among pointwise local tangent spaces (LTS). We propose a new LTSD-GD view, which is constructed by mapping LTSD and GD to the axis and axis using 1D multidimensional scaling, respectively. Unlike traditional dimensionality reduction methods that preserve various kinds of distances among points, the LTSD-GD view presents the distribution of pointwise LTS ( axis) and the variation of LTS in structures (the combination of axis and axis). We design and implement a suite of visual tools for navigating and reasoning about intrinsic structures of a high-dimensional dataset. Three case studies verify the effectiveness of our approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics 工程技术-计算机:软件工程
CiteScore
10.40
自引率
19.20%
发文量
946
审稿时长
4.5 months
期刊介绍: TVCG is a scholarly, archival journal published monthly. Its Editorial Board strives to publish papers that present important research results and state-of-the-art seminal papers in computer graphics, visualization, and virtual reality. Specific topics include, but are not limited to: rendering technologies; geometric modeling and processing; shape analysis; graphics hardware; animation and simulation; perception, interaction and user interfaces; haptics; computational photography; high-dynamic range imaging and display; user studies and evaluation; biomedical visualization; volume visualization and graphics; visual analytics for machine learning; topology-based visualization; visual programming and software visualization; visualization in data science; virtual reality, augmented reality and mixed reality; advanced display technology, (e.g., 3D, immersive and multi-modal displays); applications of computer graphics and visualization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信