Lars Wöhlbrand, Ralf Rabus, Bernd Blasius, Christoph Feenders
{"title":"NanoLC色谱柱和梯度长度、MS/MS频率和样品复杂度对海洋细菌Shotgun蛋白鉴定的影响","authors":"Lars Wöhlbrand, Ralf Rabus, Bernd Blasius, Christoph Feenders","doi":"10.1159/000478907","DOIUrl":null,"url":null,"abstract":"<p><p>Protein identification by shotgun proteomics, i.e., nano-liquid chromatography (nanoLC) peptide separation online coupled to electrospray ionization (ESI) mass spectrometry (MS)/MS, is the most widely used gel-free approach in proteome research. While the mass spectrometer accounts for mass accuracy and MS/MS frequency, the nanoLC setup and gradient time influence the number of peptides available for MS analysis, which ultimately determine the number of proteins identifiable. Here, we report on the influence of (i) analytical column length (15, 25, or 50 cm) coupled to (ii) the applied gradient length (120, 240, 360, 480, or 600 min), as well as (iii) MS/MS frequency on peptide/protein identification by shotgun proteomics of (iv) 2 marine bacteria. Longer gradients increased the number of peptides/proteins identified as well as the reproducibility of identification. Furthermore, longer analytical columns strictly enlarge the covered proteome complement. Notably, the proteome complement identified with a short column and applying a long gradient is also covered when using longer columns with shorter gradients. Coverage of the proteome complement further increases with higher MS/MS frequency. Compilation of peptide lists of replicate analyses (same gradient length) improves protein identification, while compilation of analyses with different gradient lengths yields a similar or even higher number of proteins using comparable or even less total analysis time.</p>","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":"27 3","pages":"199-212"},"PeriodicalIF":1.2000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000478907","citationCount":"6","resultStr":"{\"title\":\"Influence of NanoLC Column and Gradient Length as well as MS/MS Frequency and Sample Complexity on Shotgun Protein Identification of Marine Bacteria.\",\"authors\":\"Lars Wöhlbrand, Ralf Rabus, Bernd Blasius, Christoph Feenders\",\"doi\":\"10.1159/000478907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein identification by shotgun proteomics, i.e., nano-liquid chromatography (nanoLC) peptide separation online coupled to electrospray ionization (ESI) mass spectrometry (MS)/MS, is the most widely used gel-free approach in proteome research. While the mass spectrometer accounts for mass accuracy and MS/MS frequency, the nanoLC setup and gradient time influence the number of peptides available for MS analysis, which ultimately determine the number of proteins identifiable. Here, we report on the influence of (i) analytical column length (15, 25, or 50 cm) coupled to (ii) the applied gradient length (120, 240, 360, 480, or 600 min), as well as (iii) MS/MS frequency on peptide/protein identification by shotgun proteomics of (iv) 2 marine bacteria. Longer gradients increased the number of peptides/proteins identified as well as the reproducibility of identification. Furthermore, longer analytical columns strictly enlarge the covered proteome complement. Notably, the proteome complement identified with a short column and applying a long gradient is also covered when using longer columns with shorter gradients. Coverage of the proteome complement further increases with higher MS/MS frequency. Compilation of peptide lists of replicate analyses (same gradient length) improves protein identification, while compilation of analyses with different gradient lengths yields a similar or even higher number of proteins using comparable or even less total analysis time.</p>\",\"PeriodicalId\":16370,\"journal\":{\"name\":\"Journal of Molecular Microbiology and Biotechnology\",\"volume\":\"27 3\",\"pages\":\"199-212\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000478907\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Microbiology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000478907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000478907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Influence of NanoLC Column and Gradient Length as well as MS/MS Frequency and Sample Complexity on Shotgun Protein Identification of Marine Bacteria.
Protein identification by shotgun proteomics, i.e., nano-liquid chromatography (nanoLC) peptide separation online coupled to electrospray ionization (ESI) mass spectrometry (MS)/MS, is the most widely used gel-free approach in proteome research. While the mass spectrometer accounts for mass accuracy and MS/MS frequency, the nanoLC setup and gradient time influence the number of peptides available for MS analysis, which ultimately determine the number of proteins identifiable. Here, we report on the influence of (i) analytical column length (15, 25, or 50 cm) coupled to (ii) the applied gradient length (120, 240, 360, 480, or 600 min), as well as (iii) MS/MS frequency on peptide/protein identification by shotgun proteomics of (iv) 2 marine bacteria. Longer gradients increased the number of peptides/proteins identified as well as the reproducibility of identification. Furthermore, longer analytical columns strictly enlarge the covered proteome complement. Notably, the proteome complement identified with a short column and applying a long gradient is also covered when using longer columns with shorter gradients. Coverage of the proteome complement further increases with higher MS/MS frequency. Compilation of peptide lists of replicate analyses (same gradient length) improves protein identification, while compilation of analyses with different gradient lengths yields a similar or even higher number of proteins using comparable or even less total analysis time.
期刊介绍:
We are entering a new and exciting era of microbiological study and application. Recent advances in the now established disciplines of genomics, proteomics and bioinformatics, together with extensive cooperation between academic and industrial concerns have brought about an integration of basic and applied microbiology as never before.