{"title":"果蝇神经内分泌细胞中 IP3R 介导的 Ca2+ 释放对蛋白质翻译的控制","authors":"Megha, Gaiti Hasan","doi":"10.1080/19336934.2017.1384103","DOIUrl":null,"url":null,"abstract":"<p><p>The inositol 1,4,5-trisphosphate receptor (IP<sub>3</sub>R) is one of two Ca<sup>2+</sup> channels that gates Ca<sup>2+</sup> release from ER-stores. The ligand IP<sub>3</sub>, generated upon specific G-protein coupled receptor activation, binds to IP<sub>3</sub>R to release Ca<sup>2+</sup> into the cytosol. IP<sub>3</sub>R also mediates ER-store Ca<sup>2+</sup> release into the mitochondria, under basal as well as stimulatory conditions; an activity that influences cellular bioenergetics and thus, cellular growth and proliferation. In Drosophila neuroendocrine cells expressing a hypomorphic mutant of IP<sub>3</sub>R, we observed reduced protein translation levels. Here, we discuss the possible molecular mechanism for this observation. We hypothesise that the cellular energy sensor, AMPK connects IP<sub>3</sub>R mediated Ca<sup>2+</sup> release into the mitochondria, to protein translation, via the TOR pathway.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0a/45/kfly-11-04-1384103.PMC5721944.pdf","citationCount":"0","resultStr":"{\"title\":\"Control of protein translation by IP<sub>3</sub>R-mediated Ca<sup>2+</sup> release in Drosophila neuroendocrine cells.\",\"authors\":\"Megha, Gaiti Hasan\",\"doi\":\"10.1080/19336934.2017.1384103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The inositol 1,4,5-trisphosphate receptor (IP<sub>3</sub>R) is one of two Ca<sup>2+</sup> channels that gates Ca<sup>2+</sup> release from ER-stores. The ligand IP<sub>3</sub>, generated upon specific G-protein coupled receptor activation, binds to IP<sub>3</sub>R to release Ca<sup>2+</sup> into the cytosol. IP<sub>3</sub>R also mediates ER-store Ca<sup>2+</sup> release into the mitochondria, under basal as well as stimulatory conditions; an activity that influences cellular bioenergetics and thus, cellular growth and proliferation. In Drosophila neuroendocrine cells expressing a hypomorphic mutant of IP<sub>3</sub>R, we observed reduced protein translation levels. Here, we discuss the possible molecular mechanism for this observation. We hypothesise that the cellular energy sensor, AMPK connects IP<sub>3</sub>R mediated Ca<sup>2+</sup> release into the mitochondria, to protein translation, via the TOR pathway.</p>\",\"PeriodicalId\":12128,\"journal\":{\"name\":\"Fly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2017-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0a/45/kfly-11-04-1384103.PMC5721944.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fly\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19336934.2017.1384103\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fly","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336934.2017.1384103","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
1,4,5-三磷酸肌醇受体(IP3R)是控制ER储存库释放 Ca2+ 的两个 Ca2+ 通道之一。配体 IP3 在特定的 G 蛋白偶联受体激活后产生,与 IP3R 结合,将 Ca2+ 释放到细胞膜中。IP3R 还能在基础和刺激条件下介导 ER 储存的 Ca2+ 释放到线粒体中;这种活动会影响细胞的生物能,进而影响细胞的生长和增殖。在表达 IP3R 低位突变体的果蝇神经内分泌细胞中,我们观察到蛋白质翻译水平降低。在此,我们讨论了这一观察结果的可能分子机制。我们假设细胞能量传感器 AMPK 通过 TOR 途径将 IP3R 介导的 Ca2+ 释放到线粒体与蛋白质翻译连接起来。
Control of protein translation by IP3R-mediated Ca2+ release in Drosophila neuroendocrine cells.
The inositol 1,4,5-trisphosphate receptor (IP3R) is one of two Ca2+ channels that gates Ca2+ release from ER-stores. The ligand IP3, generated upon specific G-protein coupled receptor activation, binds to IP3R to release Ca2+ into the cytosol. IP3R also mediates ER-store Ca2+ release into the mitochondria, under basal as well as stimulatory conditions; an activity that influences cellular bioenergetics and thus, cellular growth and proliferation. In Drosophila neuroendocrine cells expressing a hypomorphic mutant of IP3R, we observed reduced protein translation levels. Here, we discuss the possible molecular mechanism for this observation. We hypothesise that the cellular energy sensor, AMPK connects IP3R mediated Ca2+ release into the mitochondria, to protein translation, via the TOR pathway.
期刊介绍:
Fly is the first international peer-reviewed journal to focus on Drosophila research. Fly covers a broad range of biological sub-disciplines, ranging from developmental biology and organogenesis to sensory neurobiology, circadian rhythm and learning and memory, to sex determination, evolutionary biology and speciation. We strive to become the “to go” resource for every researcher working with Drosophila by providing a forum where the specific interests of the Drosophila community can be discussed. With the advance of molecular technologies that enable researchers to manipulate genes and their functions in many other organisms, Fly is now also publishing papers that use other insect model systems used to investigate important biological questions.
Fly offers a variety of papers, including Original Research Articles, Methods and Technical Advances, Brief Communications, Reviews and Meeting Reports. In addition, Fly also features two unconventional types of contributions, Counterpoints and Extra View articles. Counterpoints are opinion pieces that critically discuss controversial papers questioning current paradigms, whether justified or not. Extra View articles, which generally are solicited by Fly editors, provide authors of important forthcoming papers published elsewhere an opportunity to expand on their original findings and discuss the broader impact of their discovery. Extra View authors are strongly encouraged to complement their published observations with additional data not included in the original paper or acquired subsequently.