纳米结构结核治疗载体:方法与挑战。

Q3 Medicine
Zabih Ullah, Mohammad T Athar, Abdus Samad
{"title":"纳米结构结核治疗载体:方法与挑战。","authors":"Zabih Ullah,&nbsp;Mohammad T Athar,&nbsp;Abdus Samad","doi":"10.2174/1574891X12666171006105409","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The diseases tuberculosis, triggered by intracellular pathogens, is a major problem for the global medical professionals. Treatments for these diseases through conventional dosage form consist of long-term therapy with multiple drugs, leading to several side effects and contribute to low patient compliance and drug resistance. The pathogens are found to be situated in the intracellular compartments of the cells, which ultimately results in additional blockades to effective treatment. Therefore, improved and more efficient therapies for such intracellular diseases are required.</p><p><strong>Methods: </strong>This review discusses the potential of nanomedicine and related patents to improve intracellular disease chemotherapy. To complete the objective, we searched bibliographic databases of indexed literature using a focused and structured criteria. The quality and characteristics of selected papers were assessed using standard parameters with qualitative analysis having a conceptual framework.</p><p><strong>Results: </strong>Nanoparticle-based drug delivery systems are suitable for the treatment of illnesses, such as tuberculosis. Due to the unique size-dependent properties, nanocarriers such as nanoparticles, liposomes, niosomes and microspheres offer the opportunity to develop new therapeutic and diagnostic tools. The ability to integrate drugs into nanosystems displays a new standard in pharmacotherapy that could be used for cell-targeted drug therapy. Experimental data showed the possibility of intermittent chemotherapy with main antituberculosis drugs by employing nanocarriers. Besides the advantage of the controlled release of medications in organs, the other benefits of the nanocarriers include the possibility of various routes of therapy, reduction in drug dosage and adverse effects, reduced possibility of drug interactions, and drug-resistant targeting. Published literature including patented studies suggests that nanomedicine mediated drug delivery may improve tuberculosis chemotherapy by offering benefits such as targeting to the specific organs, sustained and controlled drug release, tuberculosis diagnosis, drug delivery to the pathogen's intracellular location, and tuberculosis vaccine development.</p><p><strong>Conclusion: </strong>The properties of nanomedicine may prove beneficial in developing improved, efficacious or alternative therapies for tuberculosis diseases.</p>","PeriodicalId":20909,"journal":{"name":"Recent patents on anti-infective drug discovery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanostructured Therapeutic Carriers for Tuberculosis Treatment: Approaches & Challenges.\",\"authors\":\"Zabih Ullah,&nbsp;Mohammad T Athar,&nbsp;Abdus Samad\",\"doi\":\"10.2174/1574891X12666171006105409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The diseases tuberculosis, triggered by intracellular pathogens, is a major problem for the global medical professionals. Treatments for these diseases through conventional dosage form consist of long-term therapy with multiple drugs, leading to several side effects and contribute to low patient compliance and drug resistance. The pathogens are found to be situated in the intracellular compartments of the cells, which ultimately results in additional blockades to effective treatment. Therefore, improved and more efficient therapies for such intracellular diseases are required.</p><p><strong>Methods: </strong>This review discusses the potential of nanomedicine and related patents to improve intracellular disease chemotherapy. To complete the objective, we searched bibliographic databases of indexed literature using a focused and structured criteria. The quality and characteristics of selected papers were assessed using standard parameters with qualitative analysis having a conceptual framework.</p><p><strong>Results: </strong>Nanoparticle-based drug delivery systems are suitable for the treatment of illnesses, such as tuberculosis. Due to the unique size-dependent properties, nanocarriers such as nanoparticles, liposomes, niosomes and microspheres offer the opportunity to develop new therapeutic and diagnostic tools. The ability to integrate drugs into nanosystems displays a new standard in pharmacotherapy that could be used for cell-targeted drug therapy. Experimental data showed the possibility of intermittent chemotherapy with main antituberculosis drugs by employing nanocarriers. Besides the advantage of the controlled release of medications in organs, the other benefits of the nanocarriers include the possibility of various routes of therapy, reduction in drug dosage and adverse effects, reduced possibility of drug interactions, and drug-resistant targeting. Published literature including patented studies suggests that nanomedicine mediated drug delivery may improve tuberculosis chemotherapy by offering benefits such as targeting to the specific organs, sustained and controlled drug release, tuberculosis diagnosis, drug delivery to the pathogen's intracellular location, and tuberculosis vaccine development.</p><p><strong>Conclusion: </strong>The properties of nanomedicine may prove beneficial in developing improved, efficacious or alternative therapies for tuberculosis diseases.</p>\",\"PeriodicalId\":20909,\"journal\":{\"name\":\"Recent patents on anti-infective drug discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent patents on anti-infective drug discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1574891X12666171006105409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on anti-infective drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1574891X12666171006105409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

背景:由细胞内病原菌引发的结核病是困扰全球医学界的一大难题。通过常规剂型对这些疾病的治疗包括多种药物的长期治疗,导致多种副作用,并导致患者依从性和耐药性低。发现病原体位于细胞的细胞内区室中,这最终导致对有效治疗的额外封锁。因此,需要改进和更有效的治疗方法来治疗这种细胞内疾病。方法:综述纳米药物及其相关专利在改善细胞内疾病化疗方面的潜力。为了完成这个目标,我们使用一个集中的和结构化的标准搜索索引文献的书目数据库。所选论文的质量和特征使用具有概念框架的定性分析的标准参数进行评估。结果:纳米颗粒给药系统适用于结核病等疾病的治疗。由于其独特的尺寸依赖性,纳米载体如纳米颗粒、脂质体、纳米体和微球为开发新的治疗和诊断工具提供了机会。将药物整合到纳米系统的能力显示了药物治疗的新标准,可用于细胞靶向药物治疗。实验数据表明,利用纳米载体进行主要抗结核药物间歇化疗是可能的。除了药物在器官内的控制释放的优势外,纳米载体的其他好处还包括多种治疗途径的可能性、药物剂量和不良反应的减少、药物相互作用的可能性降低以及耐药靶向。包括专利研究在内的已发表文献表明,纳米药物介导的药物递送可以通过提供诸如靶向特定器官、持续和受控的药物释放、结核病诊断、将药物递送到病原体的细胞内位置以及结核病疫苗开发等益处来改善结核病化疗。结论:纳米药物的特性可能有助于开发改进的、有效的或替代的结核病治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanostructured Therapeutic Carriers for Tuberculosis Treatment: Approaches & Challenges.

Background: The diseases tuberculosis, triggered by intracellular pathogens, is a major problem for the global medical professionals. Treatments for these diseases through conventional dosage form consist of long-term therapy with multiple drugs, leading to several side effects and contribute to low patient compliance and drug resistance. The pathogens are found to be situated in the intracellular compartments of the cells, which ultimately results in additional blockades to effective treatment. Therefore, improved and more efficient therapies for such intracellular diseases are required.

Methods: This review discusses the potential of nanomedicine and related patents to improve intracellular disease chemotherapy. To complete the objective, we searched bibliographic databases of indexed literature using a focused and structured criteria. The quality and characteristics of selected papers were assessed using standard parameters with qualitative analysis having a conceptual framework.

Results: Nanoparticle-based drug delivery systems are suitable for the treatment of illnesses, such as tuberculosis. Due to the unique size-dependent properties, nanocarriers such as nanoparticles, liposomes, niosomes and microspheres offer the opportunity to develop new therapeutic and diagnostic tools. The ability to integrate drugs into nanosystems displays a new standard in pharmacotherapy that could be used for cell-targeted drug therapy. Experimental data showed the possibility of intermittent chemotherapy with main antituberculosis drugs by employing nanocarriers. Besides the advantage of the controlled release of medications in organs, the other benefits of the nanocarriers include the possibility of various routes of therapy, reduction in drug dosage and adverse effects, reduced possibility of drug interactions, and drug-resistant targeting. Published literature including patented studies suggests that nanomedicine mediated drug delivery may improve tuberculosis chemotherapy by offering benefits such as targeting to the specific organs, sustained and controlled drug release, tuberculosis diagnosis, drug delivery to the pathogen's intracellular location, and tuberculosis vaccine development.

Conclusion: The properties of nanomedicine may prove beneficial in developing improved, efficacious or alternative therapies for tuberculosis diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Recent patents on anti-infective drug discovery
Recent patents on anti-infective drug discovery Medicine-Pharmacology (medical)
CiteScore
2.40
自引率
0.00%
发文量
1
期刊介绍: Recent Patents on Anti-Infective Drug Discovery publishes review articles on recent patents in the field of anti-infective drug discovery e.g. novel bioactive compounds, analogs & targets. A selection of important and recent patents on anti-infective drug discovery is also included in the journal. The journal is essential reading for all researchers involved in anti-infective drug design and discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信