科学教育中物质概念学习进阶的系统回顾

IF 3.2 2区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Guanxue Shi and Hualin Bi
{"title":"科学教育中物质概念学习进阶的系统回顾","authors":"Guanxue Shi and Hualin Bi","doi":"10.1039/D3RP00047H","DOIUrl":null,"url":null,"abstract":"<p >This study evaluated recent advances in learning progressions for the concept of matter (LPCM) and explored trends by reviewing the literature on the topic published between 2005 and 2021. A total of 21 studies were reviewed. Fifteen studies were devoted to developing LPCM of varying spans and grain sizes. There were six follow-up studies based on LPCM, which were divided into two categories: curriculum research and items design. This study explored the value of the existing research on constructing learning progressions, which focused on the challenges in using LP research to specify the content of the curriculum. It analyzed the terms used to represent the big ideas, the upper anchor, progress variables, the expression of intermediate level, the characteristics of stepping stones and grades/school levels. There were some differences among individual studies on constructing LPCM in the above aspects, which makes combining LPCM difficult. These studies have also reached some consensus: the multidimensional structure of the matter concept has been empirically confirmed. These studies on the development and validation of LPCM had the following characteristics: (a) the construction intention for LPCM focuses on the development of knowledge; (b) the choice of progress variables depends on experience; and (c) the developed LPCMs are mostly linear. These constructed LPCM have not been widely applied in practice. In order for research in this field to better contribute to the curriculum and instruction, we also proposed some suggestions for future research.</p>","PeriodicalId":69,"journal":{"name":"Chemistry Education Research and Practice","volume":" 3","pages":" 793-806"},"PeriodicalIF":3.2000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic review of learning progressions for the concept of matter in science education\",\"authors\":\"Guanxue Shi and Hualin Bi\",\"doi\":\"10.1039/D3RP00047H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study evaluated recent advances in learning progressions for the concept of matter (LPCM) and explored trends by reviewing the literature on the topic published between 2005 and 2021. A total of 21 studies were reviewed. Fifteen studies were devoted to developing LPCM of varying spans and grain sizes. There were six follow-up studies based on LPCM, which were divided into two categories: curriculum research and items design. This study explored the value of the existing research on constructing learning progressions, which focused on the challenges in using LP research to specify the content of the curriculum. It analyzed the terms used to represent the big ideas, the upper anchor, progress variables, the expression of intermediate level, the characteristics of stepping stones and grades/school levels. There were some differences among individual studies on constructing LPCM in the above aspects, which makes combining LPCM difficult. These studies have also reached some consensus: the multidimensional structure of the matter concept has been empirically confirmed. These studies on the development and validation of LPCM had the following characteristics: (a) the construction intention for LPCM focuses on the development of knowledge; (b) the choice of progress variables depends on experience; and (c) the developed LPCMs are mostly linear. These constructed LPCM have not been widely applied in practice. In order for research in this field to better contribute to the curriculum and instruction, we also proposed some suggestions for future research.</p>\",\"PeriodicalId\":69,\"journal\":{\"name\":\"Chemistry Education Research and Practice\",\"volume\":\" 3\",\"pages\":\" 793-806\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Education Research and Practice\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/rp/d3rp00047h\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Education Research and Practice","FirstCategoryId":"95","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/rp/d3rp00047h","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了物质概念(LPCM)学习进展的最新进展,并通过回顾2005年至2021年发表的有关该主题的文献,探讨了趋势。共回顾了21项研究。15项研究致力于开发不同跨度和粒度的LPCM。基于LPCM的后续研究共六项,分为课程研究和项目设计两大类。本研究探讨了构建学习进阶的现有研究的价值,这些研究的重点是使用LP研究来指定课程内容的挑战。它分析了用来表示大思想的术语、上锚、进度变量、中间水平的表达、垫脚石的特征和年级/学校水平。各个研究在构建LPCM方面存在一定的差异,这给LPCM的整合带来了困难。这些研究也达成了一些共识:物质概念的多维结构得到了实证的证实。这些关于LPCM发展和验证的研究具有以下特点:(a) LPCM的建设意图侧重于知识的发展;(b)进度变量的选择取决于经验;(c)发达的lpcm大多是线性的。这些构建的LPCM还没有得到广泛的应用。为了使这一领域的研究更好地为课程和教学做出贡献,我们还对未来的研究提出了一些建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A systematic review of learning progressions for the concept of matter in science education

This study evaluated recent advances in learning progressions for the concept of matter (LPCM) and explored trends by reviewing the literature on the topic published between 2005 and 2021. A total of 21 studies were reviewed. Fifteen studies were devoted to developing LPCM of varying spans and grain sizes. There were six follow-up studies based on LPCM, which were divided into two categories: curriculum research and items design. This study explored the value of the existing research on constructing learning progressions, which focused on the challenges in using LP research to specify the content of the curriculum. It analyzed the terms used to represent the big ideas, the upper anchor, progress variables, the expression of intermediate level, the characteristics of stepping stones and grades/school levels. There were some differences among individual studies on constructing LPCM in the above aspects, which makes combining LPCM difficult. These studies have also reached some consensus: the multidimensional structure of the matter concept has been empirically confirmed. These studies on the development and validation of LPCM had the following characteristics: (a) the construction intention for LPCM focuses on the development of knowledge; (b) the choice of progress variables depends on experience; and (c) the developed LPCMs are mostly linear. These constructed LPCM have not been widely applied in practice. In order for research in this field to better contribute to the curriculum and instruction, we also proposed some suggestions for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
26.70%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal for teachers, researchers and other practitioners in chemistry education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信