利用SwAP产生基因组修饰的果蝇细胞系。

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fly Pub Date : 2017-10-02 Epub Date: 2017-08-30 DOI:10.1080/19336934.2017.1372068
Alexandra Franz, Erich Brunner, Konrad Basler
{"title":"利用SwAP产生基因组修饰的果蝇细胞系。","authors":"Alexandra Franz,&nbsp;Erich Brunner,&nbsp;Konrad Basler","doi":"10.1080/19336934.2017.1372068","DOIUrl":null,"url":null,"abstract":"<p><p>The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":"11 4","pages":"303-311"},"PeriodicalIF":2.4000,"publicationDate":"2017-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2017.1372068","citationCount":"5","resultStr":"{\"title\":\"Generation of genome-modified Drosophila cell lines using SwAP.\",\"authors\":\"Alexandra Franz,&nbsp;Erich Brunner,&nbsp;Konrad Basler\",\"doi\":\"10.1080/19336934.2017.1372068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.</p>\",\"PeriodicalId\":12128,\"journal\":{\"name\":\"Fly\",\"volume\":\"11 4\",\"pages\":\"303-311\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2017-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19336934.2017.1372068\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fly\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19336934.2017.1372068\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fly","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336934.2017.1372068","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 5

摘要

由于最近多用途CRISPR/Cas9工具的发展,产生转基因动物和细胞系的难度大大增加。然而,虽然对哺乳动物细胞系来说,等基因细胞群的分离通常是直截了当的,但克隆果蝇细胞系的产生仍然是一个长期存在的挑战,因为果蝇细胞难以在低密度下生长。在这里,我们描述了一种高效的工作流程,使用细胞池的组合来产生克隆cas9工程果蝇细胞系,限制条件培养基中的稀释和使用等位基因特异性引物的PCR,从而能够有效地选择具有合适突变谱的克隆细胞系。我们通过记录8个独立cas9编辑的犰狳突变果蝇细胞系的分离、选择和验证来验证该方案。我们的方法提供了一个强大而简单的工作流程,提高了果蝇细胞在CRISPR/Cas9基因研究中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generation of genome-modified Drosophila cell lines using SwAP.

Generation of genome-modified Drosophila cell lines using SwAP.

Generation of genome-modified Drosophila cell lines using SwAP.

Generation of genome-modified Drosophila cell lines using SwAP.

The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fly
Fly 生物-生化与分子生物学
CiteScore
2.90
自引率
0.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: Fly is the first international peer-reviewed journal to focus on Drosophila research. Fly covers a broad range of biological sub-disciplines, ranging from developmental biology and organogenesis to sensory neurobiology, circadian rhythm and learning and memory, to sex determination, evolutionary biology and speciation. We strive to become the “to go” resource for every researcher working with Drosophila by providing a forum where the specific interests of the Drosophila community can be discussed. With the advance of molecular technologies that enable researchers to manipulate genes and their functions in many other organisms, Fly is now also publishing papers that use other insect model systems used to investigate important biological questions. Fly offers a variety of papers, including Original Research Articles, Methods and Technical Advances, Brief Communications, Reviews and Meeting Reports. In addition, Fly also features two unconventional types of contributions, Counterpoints and Extra View articles. Counterpoints are opinion pieces that critically discuss controversial papers questioning current paradigms, whether justified or not. Extra View articles, which generally are solicited by Fly editors, provide authors of important forthcoming papers published elsewhere an opportunity to expand on their original findings and discuss the broader impact of their discovery. Extra View authors are strongly encouraged to complement their published observations with additional data not included in the original paper or acquired subsequently.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信