RNA聚合酶在易位中的铰链作用与紧握作用。

IF 3.6 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Transcription-Austin Pub Date : 2018-01-01 Epub Date: 2017-08-30 DOI:10.1080/21541264.2017.1330179
Yuri A Nedialkov, Kristopher Opron, Hailey L Caudill, Fadi Assaf, Amanda J Anderson, Robert I Cukier, Guowei Wei, Zachary F Burton
{"title":"RNA聚合酶在易位中的铰链作用与紧握作用。","authors":"Yuri A Nedialkov,&nbsp;Kristopher Opron,&nbsp;Hailey L Caudill,&nbsp;Fadi Assaf,&nbsp;Amanda J Anderson,&nbsp;Robert I Cukier,&nbsp;Guowei Wei,&nbsp;Zachary F Burton","doi":"10.1080/21541264.2017.1330179","DOIUrl":null,"url":null,"abstract":"<p><p>Based on molecular dynamics simulations and functional studies, a conformational mechanism is posited for forward translocation by RNA polymerase (RNAP). In a simulation of a ternary elongation complex, the clamp and downstream cleft were observed to close. Hinges within the bridge helix and trigger loop supported generation of translocation force against the RNA-DNA hybrid resulting in opening of the furthest upstream i-8 RNA-DNA bp, establishing conditions for RNAP sliding. The β flap tip helix and the most N-terminal β' Zn finger engage the RNA, indicating a path of RNA threading out of the exit channel. Because the β flap tip connects to the RNAP active site through the β subunit double-Ψ-β-barrel and the associated sandwich barrel hybrid motif (also called the flap domain), the RNAP active site is coupled to the RNA exit channel and to the translocation of RNA-DNA. Using an exonuclease III assay to monitor translocation of RNAP elongation complexes, we show that K<sup>+</sup> and Mg<sup>2+</sup> and also an RNA 3'-OH or a 3'-H<sub>2</sub> affect RNAP sliding. Because RNAP grip to template suggests a sticky translocation mechanism, and because grip is enhanced by increasing K<sup>+</sup> and Mg<sup>2+</sup>concentration, biochemical assays are consistent with a conformational change that drives forward translocation as observed in simulations. Mutational analysis of the bridge helix indicates that 778-GARKGL-783 (Escherichia coli numbering) is a homeostatic hinge that undergoes multiple bends to compensate for complex conformational dynamics during phosphodiester bond formation and translocation.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"9 1","pages":"1-16"},"PeriodicalIF":3.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541264.2017.1330179","citationCount":"8","resultStr":"{\"title\":\"Hinge action versus grip in translocation by RNA polymerase.\",\"authors\":\"Yuri A Nedialkov,&nbsp;Kristopher Opron,&nbsp;Hailey L Caudill,&nbsp;Fadi Assaf,&nbsp;Amanda J Anderson,&nbsp;Robert I Cukier,&nbsp;Guowei Wei,&nbsp;Zachary F Burton\",\"doi\":\"10.1080/21541264.2017.1330179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Based on molecular dynamics simulations and functional studies, a conformational mechanism is posited for forward translocation by RNA polymerase (RNAP). In a simulation of a ternary elongation complex, the clamp and downstream cleft were observed to close. Hinges within the bridge helix and trigger loop supported generation of translocation force against the RNA-DNA hybrid resulting in opening of the furthest upstream i-8 RNA-DNA bp, establishing conditions for RNAP sliding. The β flap tip helix and the most N-terminal β' Zn finger engage the RNA, indicating a path of RNA threading out of the exit channel. Because the β flap tip connects to the RNAP active site through the β subunit double-Ψ-β-barrel and the associated sandwich barrel hybrid motif (also called the flap domain), the RNAP active site is coupled to the RNA exit channel and to the translocation of RNA-DNA. Using an exonuclease III assay to monitor translocation of RNAP elongation complexes, we show that K<sup>+</sup> and Mg<sup>2+</sup> and also an RNA 3'-OH or a 3'-H<sub>2</sub> affect RNAP sliding. Because RNAP grip to template suggests a sticky translocation mechanism, and because grip is enhanced by increasing K<sup>+</sup> and Mg<sup>2+</sup>concentration, biochemical assays are consistent with a conformational change that drives forward translocation as observed in simulations. Mutational analysis of the bridge helix indicates that 778-GARKGL-783 (Escherichia coli numbering) is a homeostatic hinge that undergoes multiple bends to compensate for complex conformational dynamics during phosphodiester bond formation and translocation.</p>\",\"PeriodicalId\":47009,\"journal\":{\"name\":\"Transcription-Austin\",\"volume\":\"9 1\",\"pages\":\"1-16\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21541264.2017.1330179\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transcription-Austin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21541264.2017.1330179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transcription-Austin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21541264.2017.1330179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 8

摘要

基于分子动力学模拟和功能研究,提出了RNA聚合酶(RNAP)前向易位的构象机制。在三元延伸配合物的模拟中,观察到夹紧和下游间隙关闭。桥螺旋和触发环内的铰链支持对RNA-DNA杂交产生易位力,导致上游最远的i-8 RNA-DNA bp打开,为RNAP滑动创造条件。β瓣尖端螺旋和最n端β' Zn指与RNA结合,表明RNA从出口通道中穿过。由于β瓣尖端通过β亚基双-Ψ-β-桶和相关的三明治桶混合基序(也称为flap结构域)连接到RNAP活性位点,RNAP活性位点与RNA出口通道和RNA- dna易位偶联。利用核酸外切酶III检测RNAP延伸复合体的易位,我们发现K+和Mg2+以及RNA 3'-OH或3'-H2都会影响RNAP的滑动。由于RNAP对模板的附着力表明了一种粘性易位机制,并且由于附着力通过增加K+和Mg2+浓度而增强,生化分析与模拟中观察到的推动易位的构象变化一致。桥式螺旋的突变分析表明,778-GARKGL-783(大肠杆菌编号)是一个稳态铰链,在磷酸二酯键形成和易位过程中,它经历了多次弯曲来补偿复杂的构象动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hinge action versus grip in translocation by RNA polymerase.

Hinge action versus grip in translocation by RNA polymerase.

Hinge action versus grip in translocation by RNA polymerase.

Hinge action versus grip in translocation by RNA polymerase.

Based on molecular dynamics simulations and functional studies, a conformational mechanism is posited for forward translocation by RNA polymerase (RNAP). In a simulation of a ternary elongation complex, the clamp and downstream cleft were observed to close. Hinges within the bridge helix and trigger loop supported generation of translocation force against the RNA-DNA hybrid resulting in opening of the furthest upstream i-8 RNA-DNA bp, establishing conditions for RNAP sliding. The β flap tip helix and the most N-terminal β' Zn finger engage the RNA, indicating a path of RNA threading out of the exit channel. Because the β flap tip connects to the RNAP active site through the β subunit double-Ψ-β-barrel and the associated sandwich barrel hybrid motif (also called the flap domain), the RNAP active site is coupled to the RNA exit channel and to the translocation of RNA-DNA. Using an exonuclease III assay to monitor translocation of RNAP elongation complexes, we show that K+ and Mg2+ and also an RNA 3'-OH or a 3'-H2 affect RNAP sliding. Because RNAP grip to template suggests a sticky translocation mechanism, and because grip is enhanced by increasing K+ and Mg2+concentration, biochemical assays are consistent with a conformational change that drives forward translocation as observed in simulations. Mutational analysis of the bridge helix indicates that 778-GARKGL-783 (Escherichia coli numbering) is a homeostatic hinge that undergoes multiple bends to compensate for complex conformational dynamics during phosphodiester bond formation and translocation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transcription-Austin
Transcription-Austin BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
6.50
自引率
5.60%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信