Qun Li, Jia Liu, Xianying Meng, Renzhu Pang, Jie Li
{"title":"MicroRNA-454可能通过靶向AKT在三阴性乳腺癌中起癌基因作用。","authors":"Qun Li, Jia Liu, Xianying Meng, Renzhu Pang, Jie Li","doi":"10.1186/s40709-017-0067-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Altered microRNAs expression mediates tumor development and progression in many type cancers including triple negative breast cancer (TNBC). Here we detected the effect of miR-454 on cell proliferation, migration and invasion of triple negative breast cancer cells.</p><p><strong>Results: </strong>miR-454 promoted the proliferation of TNBC, and enhanced migration and invasion in TNBC cells. Meanwhile, miR-454 improved the survival of TNBC cells after ironizing radiation. miR-454 inhibited radiation-induced apoptosis in TNBC cells by regulation of caspase 3/7 and Bcl-2 expression. Furthermore, PTEN and pAKT levels in TNBC cells were changed after overexpression of miR-454.</p><p><strong>Conclusions: </strong>miR-454 played an essential role in tumor development and progression in TNBC, and might be used as a potential biomarker to predict radiotherapy response and prognosis in TNBC.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40709-017-0067-x","citationCount":"26","resultStr":"{\"title\":\"MicroRNA-454 may function as an oncogene via targeting AKT in triple negative breast cancer.\",\"authors\":\"Qun Li, Jia Liu, Xianying Meng, Renzhu Pang, Jie Li\",\"doi\":\"10.1186/s40709-017-0067-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Altered microRNAs expression mediates tumor development and progression in many type cancers including triple negative breast cancer (TNBC). Here we detected the effect of miR-454 on cell proliferation, migration and invasion of triple negative breast cancer cells.</p><p><strong>Results: </strong>miR-454 promoted the proliferation of TNBC, and enhanced migration and invasion in TNBC cells. Meanwhile, miR-454 improved the survival of TNBC cells after ironizing radiation. miR-454 inhibited radiation-induced apoptosis in TNBC cells by regulation of caspase 3/7 and Bcl-2 expression. Furthermore, PTEN and pAKT levels in TNBC cells were changed after overexpression of miR-454.</p><p><strong>Conclusions: </strong>miR-454 played an essential role in tumor development and progression in TNBC, and might be used as a potential biomarker to predict radiotherapy response and prognosis in TNBC.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2017-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40709-017-0067-x\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40709-017-0067-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40709-017-0067-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
MicroRNA-454 may function as an oncogene via targeting AKT in triple negative breast cancer.
Background: Altered microRNAs expression mediates tumor development and progression in many type cancers including triple negative breast cancer (TNBC). Here we detected the effect of miR-454 on cell proliferation, migration and invasion of triple negative breast cancer cells.
Results: miR-454 promoted the proliferation of TNBC, and enhanced migration and invasion in TNBC cells. Meanwhile, miR-454 improved the survival of TNBC cells after ironizing radiation. miR-454 inhibited radiation-induced apoptosis in TNBC cells by regulation of caspase 3/7 and Bcl-2 expression. Furthermore, PTEN and pAKT levels in TNBC cells were changed after overexpression of miR-454.
Conclusions: miR-454 played an essential role in tumor development and progression in TNBC, and might be used as a potential biomarker to predict radiotherapy response and prognosis in TNBC.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.