Jansen和Rit神经质量模型的随机版本:分析和数值。

IF 2.3 4区 医学 Q1 Neuroscience
Markus Ableidinger, Evelyn Buckwar, Harald Hinterleitner
{"title":"Jansen和Rit神经质量模型的随机版本:分析和数值。","authors":"Markus Ableidinger,&nbsp;Evelyn Buckwar,&nbsp;Harald Hinterleitner","doi":"10.1186/s13408-017-0046-4","DOIUrl":null,"url":null,"abstract":"<p><p>Neural mass models provide a useful framework for modelling mesoscopic neural dynamics and in this article we consider the Jansen and Rit neural mass model (JR-NMM). We formulate a stochastic version of it which arises by incorporating random input and has the structure of a damped stochastic Hamiltonian system with nonlinear displacement. We then investigate path properties and moment bounds of the model. Moreover, we study the asymptotic behaviour of the model and provide long-time stability results by establishing the geometric ergodicity of the system, which means that the system-independently of the initial values-always converges to an invariant measure. In the last part, we simulate the stochastic JR-NMM by an efficient numerical scheme based on a splitting approach which preserves the qualitative behaviour of the solution.</p>","PeriodicalId":54271,"journal":{"name":"Journal of Mathematical Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2017-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13408-017-0046-4","citationCount":"33","resultStr":"{\"title\":\"A Stochastic Version of the Jansen and Rit Neural Mass Model: Analysis and Numerics.\",\"authors\":\"Markus Ableidinger,&nbsp;Evelyn Buckwar,&nbsp;Harald Hinterleitner\",\"doi\":\"10.1186/s13408-017-0046-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural mass models provide a useful framework for modelling mesoscopic neural dynamics and in this article we consider the Jansen and Rit neural mass model (JR-NMM). We formulate a stochastic version of it which arises by incorporating random input and has the structure of a damped stochastic Hamiltonian system with nonlinear displacement. We then investigate path properties and moment bounds of the model. Moreover, we study the asymptotic behaviour of the model and provide long-time stability results by establishing the geometric ergodicity of the system, which means that the system-independently of the initial values-always converges to an invariant measure. In the last part, we simulate the stochastic JR-NMM by an efficient numerical scheme based on a splitting approach which preserves the qualitative behaviour of the solution.</p>\",\"PeriodicalId\":54271,\"journal\":{\"name\":\"Journal of Mathematical Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2017-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13408-017-0046-4\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13408-017-0046-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13408-017-0046-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 33

摘要

神经质量模型为模拟介观神经动力学提供了一个有用的框架,在本文中,我们考虑Jansen和Rit神经质量模型(JR-NMM)。我们提出了它的一个随机版本,它是由随机输入引起的,具有非线性位移的阻尼随机哈密顿系统的结构。然后我们研究了模型的路径属性和矩界。此外,我们研究了模型的渐近行为,并通过建立系统的几何遍历性提供了长期稳定性结果,这意味着系统-独立于初始值-总是收敛到一个不变测度。在最后一部分中,我们采用一种有效的数值格式来模拟随机JR-NMM,该格式基于分裂方法,保留了解的定性行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Stochastic Version of the Jansen and Rit Neural Mass Model: Analysis and Numerics.

A Stochastic Version of the Jansen and Rit Neural Mass Model: Analysis and Numerics.

A Stochastic Version of the Jansen and Rit Neural Mass Model: Analysis and Numerics.

A Stochastic Version of the Jansen and Rit Neural Mass Model: Analysis and Numerics.

Neural mass models provide a useful framework for modelling mesoscopic neural dynamics and in this article we consider the Jansen and Rit neural mass model (JR-NMM). We formulate a stochastic version of it which arises by incorporating random input and has the structure of a damped stochastic Hamiltonian system with nonlinear displacement. We then investigate path properties and moment bounds of the model. Moreover, we study the asymptotic behaviour of the model and provide long-time stability results by establishing the geometric ergodicity of the system, which means that the system-independently of the initial values-always converges to an invariant measure. In the last part, we simulate the stochastic JR-NMM by an efficient numerical scheme based on a splitting approach which preserves the qualitative behaviour of the solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Neuroscience
Journal of Mathematical Neuroscience Neuroscience-Neuroscience (miscellaneous)
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: The Journal of Mathematical Neuroscience (JMN) publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions. It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged. Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system in general and the human brain in particular are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信