{"title":"姐妹核蛋白含量的差异:来自双核和单核细胞的证据。","authors":"S W Armstrong, D Davidson","doi":"10.1139/o82-044","DOIUrl":null,"url":null,"abstract":"<p><p>DNA and protein contents of pairs of sister nuclei were determined using a combined Feulgen-dinitrofluorobenzene technique. Sister nuclei were studied in binucleate cells, induced by treatment with 0.1% caffeine, and in sister mononucleate cells of untreated roots. Excised pea roots, grown in culture, were treated with 5-aminouracil to induce mitotic synchrony and with caffeine at the time of peak mitotic index, to provide the maximum number of binucleate cells. The induced binucleate cells form a marked population which was followed through a cell cycle; sister nuclei showed a correlation of volume and protein content, r = 0.79. Protein contents of sister nuclei were rarely identical and at 1 + 2 and 1 + 6 h the difference in protein contents of sister nuclei was significant (p = 0.05). Mean nuclear protein content decreased from 1 + 2 to 1 + 6 h; then, as nuclei entered S phase, their protein content increased. From 1 + 2 to 1 + 14 h the increase in protein content, in absolute amount, was identical in both sister nuclei. This suggests that there was a biphasic pattern of protein uptake; it is differential, in sister nuclei, in the first part of G1 but is identical throughout the rest of interphase. Analysis of sister nuclei from sister mononucleate cells showed a similar pattern of change; this is further evidence, from untreated cells, of a biophasic pattern of protein uptake. Caffeine-treated nuclei had lower protein contents than untreated nuclei, yet they completed a cell cycle and entered mitosis; this suggests that nonessential proteins were no longer present. It is proposed that mitosis is asymmetrical for molecules that regulate rates of macromolecular synthesis, cell growth, and progress through a cell cycle and that once the initial asymmetry has been established, it is maintained throughout interphase, even in binucleate cells in which the two nuclei share a common cytoplasm.</p>","PeriodicalId":9508,"journal":{"name":"Canadian journal of biochemistry","volume":" ","pages":"371-8"},"PeriodicalIF":0.0000,"publicationDate":"1982-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1139/o82-044","citationCount":"5","resultStr":"{\"title\":\"Differences in protein content of sister nuclei: evidence from binucleate and mononucleate cells.\",\"authors\":\"S W Armstrong, D Davidson\",\"doi\":\"10.1139/o82-044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DNA and protein contents of pairs of sister nuclei were determined using a combined Feulgen-dinitrofluorobenzene technique. Sister nuclei were studied in binucleate cells, induced by treatment with 0.1% caffeine, and in sister mononucleate cells of untreated roots. Excised pea roots, grown in culture, were treated with 5-aminouracil to induce mitotic synchrony and with caffeine at the time of peak mitotic index, to provide the maximum number of binucleate cells. The induced binucleate cells form a marked population which was followed through a cell cycle; sister nuclei showed a correlation of volume and protein content, r = 0.79. Protein contents of sister nuclei were rarely identical and at 1 + 2 and 1 + 6 h the difference in protein contents of sister nuclei was significant (p = 0.05). Mean nuclear protein content decreased from 1 + 2 to 1 + 6 h; then, as nuclei entered S phase, their protein content increased. From 1 + 2 to 1 + 14 h the increase in protein content, in absolute amount, was identical in both sister nuclei. This suggests that there was a biphasic pattern of protein uptake; it is differential, in sister nuclei, in the first part of G1 but is identical throughout the rest of interphase. Analysis of sister nuclei from sister mononucleate cells showed a similar pattern of change; this is further evidence, from untreated cells, of a biophasic pattern of protein uptake. Caffeine-treated nuclei had lower protein contents than untreated nuclei, yet they completed a cell cycle and entered mitosis; this suggests that nonessential proteins were no longer present. It is proposed that mitosis is asymmetrical for molecules that regulate rates of macromolecular synthesis, cell growth, and progress through a cell cycle and that once the initial asymmetry has been established, it is maintained throughout interphase, even in binucleate cells in which the two nuclei share a common cytoplasm.</p>\",\"PeriodicalId\":9508,\"journal\":{\"name\":\"Canadian journal of biochemistry\",\"volume\":\" \",\"pages\":\"371-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1139/o82-044\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/o82-044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/o82-044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Differences in protein content of sister nuclei: evidence from binucleate and mononucleate cells.
DNA and protein contents of pairs of sister nuclei were determined using a combined Feulgen-dinitrofluorobenzene technique. Sister nuclei were studied in binucleate cells, induced by treatment with 0.1% caffeine, and in sister mononucleate cells of untreated roots. Excised pea roots, grown in culture, were treated with 5-aminouracil to induce mitotic synchrony and with caffeine at the time of peak mitotic index, to provide the maximum number of binucleate cells. The induced binucleate cells form a marked population which was followed through a cell cycle; sister nuclei showed a correlation of volume and protein content, r = 0.79. Protein contents of sister nuclei were rarely identical and at 1 + 2 and 1 + 6 h the difference in protein contents of sister nuclei was significant (p = 0.05). Mean nuclear protein content decreased from 1 + 2 to 1 + 6 h; then, as nuclei entered S phase, their protein content increased. From 1 + 2 to 1 + 14 h the increase in protein content, in absolute amount, was identical in both sister nuclei. This suggests that there was a biphasic pattern of protein uptake; it is differential, in sister nuclei, in the first part of G1 but is identical throughout the rest of interphase. Analysis of sister nuclei from sister mononucleate cells showed a similar pattern of change; this is further evidence, from untreated cells, of a biophasic pattern of protein uptake. Caffeine-treated nuclei had lower protein contents than untreated nuclei, yet they completed a cell cycle and entered mitosis; this suggests that nonessential proteins were no longer present. It is proposed that mitosis is asymmetrical for molecules that regulate rates of macromolecular synthesis, cell growth, and progress through a cell cycle and that once the initial asymmetry has been established, it is maintained throughout interphase, even in binucleate cells in which the two nuclei share a common cytoplasm.