生物物理系统动力学原子详细模拟的新范例。

IF 7.2 2区 生物学 Q1 BIOPHYSICS
Ron Elber
{"title":"生物物理系统动力学原子详细模拟的新范例。","authors":"Ron Elber","doi":"10.1017/S0033583517000063","DOIUrl":null,"url":null,"abstract":"<p><p>The kinetics of biochemical and biophysical events determined the course of life processes and attracted considerable interest and research. For example, modeling of biological networks and cellular responses relies on the availability of information on rate coefficients. Atomically detailed simulations hold the promise of supplementing experimental data to obtain a more complete kinetic picture. However, simulations at biological time scales are challenging. Typical computer resources are insufficient to provide the ensemble of trajectories at the correct length that is required for straightforward calculations of time scales. In the last years, new technologies emerged that make atomically detailed simulations of rate coefficients possible. Instead of computing complete trajectories from reactants to products, these approaches launch a large number of short trajectories at different positions. Since the trajectories are short, they are computed trivially in parallel on modern computer architecture. The starting and termination positions of the short trajectories are chosen, following statistical mechanics theory, to enhance efficiency. These trajectories are analyzed. The analysis produces accurate estimates of time scales as long as hours. The theory of Milestoning that exploits the use of short trajectories is discussed, and several applications are described.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0033583517000063","citationCount":"32","resultStr":"{\"title\":\"A new paradigm for atomically detailed simulations of kinetics in biophysical systems.\",\"authors\":\"Ron Elber\",\"doi\":\"10.1017/S0033583517000063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The kinetics of biochemical and biophysical events determined the course of life processes and attracted considerable interest and research. For example, modeling of biological networks and cellular responses relies on the availability of information on rate coefficients. Atomically detailed simulations hold the promise of supplementing experimental data to obtain a more complete kinetic picture. However, simulations at biological time scales are challenging. Typical computer resources are insufficient to provide the ensemble of trajectories at the correct length that is required for straightforward calculations of time scales. In the last years, new technologies emerged that make atomically detailed simulations of rate coefficients possible. Instead of computing complete trajectories from reactants to products, these approaches launch a large number of short trajectories at different positions. Since the trajectories are short, they are computed trivially in parallel on modern computer architecture. The starting and termination positions of the short trajectories are chosen, following statistical mechanics theory, to enhance efficiency. These trajectories are analyzed. The analysis produces accurate estimates of time scales as long as hours. The theory of Milestoning that exploits the use of short trajectories is discussed, and several applications are described.</p>\",\"PeriodicalId\":20828,\"journal\":{\"name\":\"Quarterly Reviews of Biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0033583517000063\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Reviews of Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1017/S0033583517000063\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Reviews of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0033583517000063","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 32

摘要

生物化学和生物物理事件的动力学决定了生命过程的进程,引起了人们极大的兴趣和研究。例如,生物网络和细胞反应的建模依赖于速率系数信息的可用性。原子细节模拟有望补充实验数据,以获得更完整的动力学图像。然而,在生物时间尺度上的模拟是具有挑战性的。典型的计算机资源不足以提供直接计算时间尺度所需的正确长度的轨迹集合。在过去的几年里,新技术的出现使速率系数的原子详细模拟成为可能。这些方法不是计算从反应物到生成物的完整轨迹,而是在不同位置发射大量的短轨迹。由于轨迹很短,在现代计算机体系结构上可以简单地并行计算。根据统计力学理论选择短轨迹的起始和终止位置,以提高效率。分析了这些轨迹。这种分析产生了精确到小时的时间尺度估计。讨论了利用短轨迹的里程碑理论,并描述了几个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new paradigm for atomically detailed simulations of kinetics in biophysical systems.

The kinetics of biochemical and biophysical events determined the course of life processes and attracted considerable interest and research. For example, modeling of biological networks and cellular responses relies on the availability of information on rate coefficients. Atomically detailed simulations hold the promise of supplementing experimental data to obtain a more complete kinetic picture. However, simulations at biological time scales are challenging. Typical computer resources are insufficient to provide the ensemble of trajectories at the correct length that is required for straightforward calculations of time scales. In the last years, new technologies emerged that make atomically detailed simulations of rate coefficients possible. Instead of computing complete trajectories from reactants to products, these approaches launch a large number of short trajectories at different positions. Since the trajectories are short, they are computed trivially in parallel on modern computer architecture. The starting and termination positions of the short trajectories are chosen, following statistical mechanics theory, to enhance efficiency. These trajectories are analyzed. The analysis produces accurate estimates of time scales as long as hours. The theory of Milestoning that exploits the use of short trajectories is discussed, and several applications are described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quarterly Reviews of Biophysics
Quarterly Reviews of Biophysics 生物-生物物理
CiteScore
12.90
自引率
1.60%
发文量
16
期刊介绍: Quarterly Reviews of Biophysics covers the field of experimental and computational biophysics. Experimental biophysics span across different physics-based measurements such as optical microscopy, super-resolution imaging, electron microscopy, X-ray and neutron diffraction, spectroscopy, calorimetry, thermodynamics and their integrated uses. Computational biophysics includes theory, simulations, bioinformatics and system analysis. These biophysical methodologies are used to discover the structure, function and physiology of biological systems in varying complexities from cells, organelles, membranes, protein-nucleic acid complexes, molecular machines to molecules. The majority of reviews published are invited from authors who have made significant contributions to the field, who give critical, readable and sometimes controversial accounts of recent progress and problems in their specialty. The journal has long-standing, worldwide reputation, demonstrated by its high ranking in the ISI Science Citation Index, as a forum for general and specialized communication between biophysicists working in different areas. Thematic issues are occasionally published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信