Smarajit Maiti, Tanmoy Samanta, Sumit Sahoo, Sudipta Roy
{"title":"新分离的农业短芽孢杆菌ST15c10蛋白的双羧甲基纤维素酶和明胶酶活性在底物利用中具有互反规律。","authors":"Smarajit Maiti, Tanmoy Samanta, Sumit Sahoo, Sudipta Roy","doi":"10.1159/000479109","DOIUrl":null,"url":null,"abstract":"<p><p>A protein showing endoglucanase-peptidase activity was prepared from a newly isolated bacterium (ST15c10). We identified ST15c10 as Brevibacillus agri based on electron-microscopic images and its 16S-rDNA sequence (GenBank accession No. HM446043), which exhibits 98.9% sequence identity to B. agri (KZ17)/B. formosus (DSM-9885T)/B. brevis. The enzyme was purified to homogeneity and gave a single peak during high-performance liquid chromatography on a Seralose 6B-150 gel-matrix/C-18 column. MALDI-TOF mass-spectrometry and bioinformatics studies revealed significant similarity to M42-aminopeptidases/endoglucanases of the CelM family. These enzymes are found in all Brevibacillus strains for which the genome sequence is known. ST15c10 grows optimally on carboxymethyl cellulose (CMC)-gelatin (40°C/pH 8-9), and also shows strong growth/carboxymethyl cellulase (CMCase) activity in submerged bagasse fermentation. The purified enzyme also functions as endoglucanase with solid bagasse/rice straw. Its CMCase activity (optimal at pH 5.6 and 60°C/Km = 35.5 µM/Vmax = 1,024U) was visualized by zymography on a CMC-polyacrylamide gel, which provided a strong band of approximately 70 kDa. The purified enzyme also showed strong peptidase (gelatinase) activity (pH 7.2/40°C during zymography on 6-12% gelatin/1% gelatin-PAGE (at approx. 70 kDa). The CMCase activity is inhibited by the metal ions Mn/Cu/Fe/Co (50%), Hg/KMnO4 (100%), and by glucose or lactose (50-75%; all at 1 mM). The observed dose/time-dependent inhibition by Hg ions could be prevented with 2-mercaptoethanol. A comparison of the B. agri endoglucanase-aminopeptidase (ELK43520; 350 aa) with other members of the M42-family revealed the conservation of active-site residues Cys256/Cys260, which were previously identified as metal-binding sites. Regulation of the endoglucanase activity probably occurs via metal binding-triggered changes in the redox state of the enzyme. Studies on this type of enzyme are of high importance for basic scientific and industrial research.</p>","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000479109","citationCount":"4","resultStr":"{\"title\":\"The Dual Carboxymethyl Cellulase and Gelatinase Activities of a Newly Isolated Protein from Brevibacillus agri ST15c10 Confer Reciprocal Regulations in Substrate Utilization.\",\"authors\":\"Smarajit Maiti, Tanmoy Samanta, Sumit Sahoo, Sudipta Roy\",\"doi\":\"10.1159/000479109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A protein showing endoglucanase-peptidase activity was prepared from a newly isolated bacterium (ST15c10). We identified ST15c10 as Brevibacillus agri based on electron-microscopic images and its 16S-rDNA sequence (GenBank accession No. HM446043), which exhibits 98.9% sequence identity to B. agri (KZ17)/B. formosus (DSM-9885T)/B. brevis. The enzyme was purified to homogeneity and gave a single peak during high-performance liquid chromatography on a Seralose 6B-150 gel-matrix/C-18 column. MALDI-TOF mass-spectrometry and bioinformatics studies revealed significant similarity to M42-aminopeptidases/endoglucanases of the CelM family. These enzymes are found in all Brevibacillus strains for which the genome sequence is known. ST15c10 grows optimally on carboxymethyl cellulose (CMC)-gelatin (40°C/pH 8-9), and also shows strong growth/carboxymethyl cellulase (CMCase) activity in submerged bagasse fermentation. The purified enzyme also functions as endoglucanase with solid bagasse/rice straw. Its CMCase activity (optimal at pH 5.6 and 60°C/Km = 35.5 µM/Vmax = 1,024U) was visualized by zymography on a CMC-polyacrylamide gel, which provided a strong band of approximately 70 kDa. The purified enzyme also showed strong peptidase (gelatinase) activity (pH 7.2/40°C during zymography on 6-12% gelatin/1% gelatin-PAGE (at approx. 70 kDa). The CMCase activity is inhibited by the metal ions Mn/Cu/Fe/Co (50%), Hg/KMnO4 (100%), and by glucose or lactose (50-75%; all at 1 mM). The observed dose/time-dependent inhibition by Hg ions could be prevented with 2-mercaptoethanol. A comparison of the B. agri endoglucanase-aminopeptidase (ELK43520; 350 aa) with other members of the M42-family revealed the conservation of active-site residues Cys256/Cys260, which were previously identified as metal-binding sites. Regulation of the endoglucanase activity probably occurs via metal binding-triggered changes in the redox state of the enzyme. Studies on this type of enzyme are of high importance for basic scientific and industrial research.</p>\",\"PeriodicalId\":16370,\"journal\":{\"name\":\"Journal of Molecular Microbiology and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000479109\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Microbiology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000479109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/12/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000479109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The Dual Carboxymethyl Cellulase and Gelatinase Activities of a Newly Isolated Protein from Brevibacillus agri ST15c10 Confer Reciprocal Regulations in Substrate Utilization.
A protein showing endoglucanase-peptidase activity was prepared from a newly isolated bacterium (ST15c10). We identified ST15c10 as Brevibacillus agri based on electron-microscopic images and its 16S-rDNA sequence (GenBank accession No. HM446043), which exhibits 98.9% sequence identity to B. agri (KZ17)/B. formosus (DSM-9885T)/B. brevis. The enzyme was purified to homogeneity and gave a single peak during high-performance liquid chromatography on a Seralose 6B-150 gel-matrix/C-18 column. MALDI-TOF mass-spectrometry and bioinformatics studies revealed significant similarity to M42-aminopeptidases/endoglucanases of the CelM family. These enzymes are found in all Brevibacillus strains for which the genome sequence is known. ST15c10 grows optimally on carboxymethyl cellulose (CMC)-gelatin (40°C/pH 8-9), and also shows strong growth/carboxymethyl cellulase (CMCase) activity in submerged bagasse fermentation. The purified enzyme also functions as endoglucanase with solid bagasse/rice straw. Its CMCase activity (optimal at pH 5.6 and 60°C/Km = 35.5 µM/Vmax = 1,024U) was visualized by zymography on a CMC-polyacrylamide gel, which provided a strong band of approximately 70 kDa. The purified enzyme also showed strong peptidase (gelatinase) activity (pH 7.2/40°C during zymography on 6-12% gelatin/1% gelatin-PAGE (at approx. 70 kDa). The CMCase activity is inhibited by the metal ions Mn/Cu/Fe/Co (50%), Hg/KMnO4 (100%), and by glucose or lactose (50-75%; all at 1 mM). The observed dose/time-dependent inhibition by Hg ions could be prevented with 2-mercaptoethanol. A comparison of the B. agri endoglucanase-aminopeptidase (ELK43520; 350 aa) with other members of the M42-family revealed the conservation of active-site residues Cys256/Cys260, which were previously identified as metal-binding sites. Regulation of the endoglucanase activity probably occurs via metal binding-triggered changes in the redox state of the enzyme. Studies on this type of enzyme are of high importance for basic scientific and industrial research.
期刊介绍:
We are entering a new and exciting era of microbiological study and application. Recent advances in the now established disciplines of genomics, proteomics and bioinformatics, together with extensive cooperation between academic and industrial concerns have brought about an integration of basic and applied microbiology as never before.