{"title":"集成数据分析和仿真方法,以支持制造决策。","authors":"Deogratias Kibira, Qais Hatim, Soundar Kumara, Guodong Shao","doi":"10.1109/WSC.2015.7408324","DOIUrl":null,"url":null,"abstract":"<p><p>Modern manufacturing systems are installed with smart devices such as sensors that monitor system performance and collect data to manage uncertainties in their operations. However, multiple parameters and variables affect system performance, making it impossible for a human to make informed decisions without systematic methodologies and tools. Further, the large volume and variety of streaming data collected is beyond simulation analysis alone. Simulation models are run with well-prepared data. Novel approaches, combining different methods, are needed to use this data for making guided decisions. This paper proposes a methodology whereby parameters that most affect system performance are extracted from the data using data analytics methods. These parameters are used to develop scenarios for simulation inputs; system optimizations are performed on simulation data outputs. A case study of a machine shop demonstrates the proposed methodology. This paper also reviews candidate standards for data collection, simulation, and systems interfaces.</p>","PeriodicalId":74535,"journal":{"name":"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference","volume":"2015 ","pages":"2100-2111"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5497469/pdf/nihms866390.pdf","citationCount":"0","resultStr":"{\"title\":\"INTEGRATING DATA ANALYTICS AND SIMULATION METHODS TO SUPPORT MANUFACTURING DECISION MAKING.\",\"authors\":\"Deogratias Kibira, Qais Hatim, Soundar Kumara, Guodong Shao\",\"doi\":\"10.1109/WSC.2015.7408324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modern manufacturing systems are installed with smart devices such as sensors that monitor system performance and collect data to manage uncertainties in their operations. However, multiple parameters and variables affect system performance, making it impossible for a human to make informed decisions without systematic methodologies and tools. Further, the large volume and variety of streaming data collected is beyond simulation analysis alone. Simulation models are run with well-prepared data. Novel approaches, combining different methods, are needed to use this data for making guided decisions. This paper proposes a methodology whereby parameters that most affect system performance are extracted from the data using data analytics methods. These parameters are used to develop scenarios for simulation inputs; system optimizations are performed on simulation data outputs. A case study of a machine shop demonstrates the proposed methodology. This paper also reviews candidate standards for data collection, simulation, and systems interfaces.</p>\",\"PeriodicalId\":74535,\"journal\":{\"name\":\"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference\",\"volume\":\"2015 \",\"pages\":\"2100-2111\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5497469/pdf/nihms866390.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2015.7408324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/2/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2015.7408324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/2/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
INTEGRATING DATA ANALYTICS AND SIMULATION METHODS TO SUPPORT MANUFACTURING DECISION MAKING.
Modern manufacturing systems are installed with smart devices such as sensors that monitor system performance and collect data to manage uncertainties in their operations. However, multiple parameters and variables affect system performance, making it impossible for a human to make informed decisions without systematic methodologies and tools. Further, the large volume and variety of streaming data collected is beyond simulation analysis alone. Simulation models are run with well-prepared data. Novel approaches, combining different methods, are needed to use this data for making guided decisions. This paper proposes a methodology whereby parameters that most affect system performance are extracted from the data using data analytics methods. These parameters are used to develop scenarios for simulation inputs; system optimizations are performed on simulation data outputs. A case study of a machine shop demonstrates the proposed methodology. This paper also reviews candidate standards for data collection, simulation, and systems interfaces.