{"title":"卵巢外甾体生物合成与女性生殖系干细胞。","authors":"Tomotsune Ameku, Yuto Yoshinari, Ruriko Fukuda, Ryusuke Niwa","doi":"10.1080/19336934.2017.1291472","DOIUrl":null,"url":null,"abstract":"<p><p>The germline stem cells (GSCs) are critical for gametogenesis throughout the adult life. Stem cell identity is maintained by local signals from a specialized microenvironment called the niche. However, it is unclear how systemic signals regulate stem cell activity in response to environmental cues. In our previous article, we reported that mating stimulates GSC proliferation in female Drosophila. The mating-induced GSC proliferation is mediated by ovarian ecdysteroids, whose biosynthesis is positively controlled by Sex peptide signaling. Here, we characterized the post-eclosion and post-mating expression pattern of the genes encoding the ecdysteroidogenic enzymes in the ovary. We further investigated the biosynthetic functions of the ovarian ecdysteroid in GSC maintenance in the mated females. We also briefly discuss the regulation of the ecdysteroidogenic enzyme-encoding genes and the subsequent ecdysteroid biosynthesis in the ovary of the adult Drosophila.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2017.1291472","citationCount":"30","resultStr":"{\"title\":\"Ovarian ecdysteroid biosynthesis and female germline stem cells.\",\"authors\":\"Tomotsune Ameku, Yuto Yoshinari, Ruriko Fukuda, Ryusuke Niwa\",\"doi\":\"10.1080/19336934.2017.1291472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The germline stem cells (GSCs) are critical for gametogenesis throughout the adult life. Stem cell identity is maintained by local signals from a specialized microenvironment called the niche. However, it is unclear how systemic signals regulate stem cell activity in response to environmental cues. In our previous article, we reported that mating stimulates GSC proliferation in female Drosophila. The mating-induced GSC proliferation is mediated by ovarian ecdysteroids, whose biosynthesis is positively controlled by Sex peptide signaling. Here, we characterized the post-eclosion and post-mating expression pattern of the genes encoding the ecdysteroidogenic enzymes in the ovary. We further investigated the biosynthetic functions of the ovarian ecdysteroid in GSC maintenance in the mated females. We also briefly discuss the regulation of the ecdysteroidogenic enzyme-encoding genes and the subsequent ecdysteroid biosynthesis in the ovary of the adult Drosophila.</p>\",\"PeriodicalId\":12128,\"journal\":{\"name\":\"Fly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2017-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19336934.2017.1291472\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fly\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19336934.2017.1291472\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/2/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fly","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336934.2017.1291472","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/2/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ovarian ecdysteroid biosynthesis and female germline stem cells.
The germline stem cells (GSCs) are critical for gametogenesis throughout the adult life. Stem cell identity is maintained by local signals from a specialized microenvironment called the niche. However, it is unclear how systemic signals regulate stem cell activity in response to environmental cues. In our previous article, we reported that mating stimulates GSC proliferation in female Drosophila. The mating-induced GSC proliferation is mediated by ovarian ecdysteroids, whose biosynthesis is positively controlled by Sex peptide signaling. Here, we characterized the post-eclosion and post-mating expression pattern of the genes encoding the ecdysteroidogenic enzymes in the ovary. We further investigated the biosynthetic functions of the ovarian ecdysteroid in GSC maintenance in the mated females. We also briefly discuss the regulation of the ecdysteroidogenic enzyme-encoding genes and the subsequent ecdysteroid biosynthesis in the ovary of the adult Drosophila.
期刊介绍:
Fly is the first international peer-reviewed journal to focus on Drosophila research. Fly covers a broad range of biological sub-disciplines, ranging from developmental biology and organogenesis to sensory neurobiology, circadian rhythm and learning and memory, to sex determination, evolutionary biology and speciation. We strive to become the “to go” resource for every researcher working with Drosophila by providing a forum where the specific interests of the Drosophila community can be discussed. With the advance of molecular technologies that enable researchers to manipulate genes and their functions in many other organisms, Fly is now also publishing papers that use other insect model systems used to investigate important biological questions.
Fly offers a variety of papers, including Original Research Articles, Methods and Technical Advances, Brief Communications, Reviews and Meeting Reports. In addition, Fly also features two unconventional types of contributions, Counterpoints and Extra View articles. Counterpoints are opinion pieces that critically discuss controversial papers questioning current paradigms, whether justified or not. Extra View articles, which generally are solicited by Fly editors, provide authors of important forthcoming papers published elsewhere an opportunity to expand on their original findings and discuss the broader impact of their discovery. Extra View authors are strongly encouraged to complement their published observations with additional data not included in the original paper or acquired subsequently.