六、发展研究中针对个人的个体差异方法。

IF 9.4 1区 心理学 Q1 PSYCHOLOGY, DEVELOPMENTAL
Michael J Rovine, Lawrence L Lo
{"title":"六、发展研究中针对个人的个体差异方法。","authors":"Michael J Rovine,&nbsp;Lawrence L Lo","doi":"10.1111/mono.12300","DOIUrl":null,"url":null,"abstract":"<p><p>In this chapter, we demonstrate the way certain common analytic approaches (e.g., polynomial curve modeling, repeated measures ANOVA, latent curve, and other factor models) create individual difference measures based on a common underlying model. After showing that these approaches require only means and covariance (or correlation) matrices to estimate regression coefficients based on a hypothesized model, we describe how to recast these models based on time-series related approaches focusing on single subject time series approaches (e.g., vector autoregressive approaches and P-technique factor models). We show how these latter methods create parameters based on models that can vary from individual-to-individual. We demonstrate differences for the factor model using real data examples.</p>","PeriodicalId":55972,"journal":{"name":"Monographs of the Society for Research in Child Development","volume":"82 2","pages":"84-104"},"PeriodicalIF":9.4000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/mono.12300","citationCount":"1","resultStr":"{\"title\":\"VI. PERSON-SPECIFIC INDIVIDUAL DIFFERENCE APPROACHES IN DEVELOPMENTAL RESEARCH.\",\"authors\":\"Michael J Rovine,&nbsp;Lawrence L Lo\",\"doi\":\"10.1111/mono.12300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this chapter, we demonstrate the way certain common analytic approaches (e.g., polynomial curve modeling, repeated measures ANOVA, latent curve, and other factor models) create individual difference measures based on a common underlying model. After showing that these approaches require only means and covariance (or correlation) matrices to estimate regression coefficients based on a hypothesized model, we describe how to recast these models based on time-series related approaches focusing on single subject time series approaches (e.g., vector autoregressive approaches and P-technique factor models). We show how these latter methods create parameters based on models that can vary from individual-to-individual. We demonstrate differences for the factor model using real data examples.</p>\",\"PeriodicalId\":55972,\"journal\":{\"name\":\"Monographs of the Society for Research in Child Development\",\"volume\":\"82 2\",\"pages\":\"84-104\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/mono.12300\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monographs of the Society for Research in Child Development\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/mono.12300\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, DEVELOPMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monographs of the Society for Research in Child Development","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/mono.12300","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, DEVELOPMENTAL","Score":null,"Total":0}
引用次数: 1

摘要

在本章中,我们展示了某些常见的分析方法(例如,多项式曲线建模,重复测量ANOVA,潜在曲线和其他因素模型)基于共同的底层模型创建个体差异测量的方式。在表明这些方法只需要均值和协方差(或相关)矩阵来估计基于假设模型的回归系数之后,我们描述了如何基于时间序列相关方法(例如,向量自回归方法和p -技术因子模型)来重塑这些模型,这些方法侧重于单一主题时间序列方法。我们将展示后一种方法如何基于个体差异的模型创建参数。我们使用实际数据示例来证明因子模型的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VI. PERSON-SPECIFIC INDIVIDUAL DIFFERENCE APPROACHES IN DEVELOPMENTAL RESEARCH.

In this chapter, we demonstrate the way certain common analytic approaches (e.g., polynomial curve modeling, repeated measures ANOVA, latent curve, and other factor models) create individual difference measures based on a common underlying model. After showing that these approaches require only means and covariance (or correlation) matrices to estimate regression coefficients based on a hypothesized model, we describe how to recast these models based on time-series related approaches focusing on single subject time series approaches (e.g., vector autoregressive approaches and P-technique factor models). We show how these latter methods create parameters based on models that can vary from individual-to-individual. We demonstrate differences for the factor model using real data examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.30
自引率
0.00%
发文量
0
期刊介绍: Since 1935, Monographs of the Society for Research in Child Development has been a platform for presenting in-depth research studies and significant findings in child development and related disciplines. Each issue features a single study or a collection of papers on a unified theme, often complemented by commentary and discussion. In alignment with all Society for Research in Child Development (SRCD) publications, the Monographs facilitate the exchange of data, techniques, research methods, and conclusions among development specialists across diverse disciplines. Subscribing to the Monographs series also includes a full subscription (6 issues) to Child Development, the flagship journal of the SRCD, and Child Development Perspectives, the newest journal from the SRCD.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信