Anne-Claire Dorsemans, David Couret, Anaïs Hoarau, Olivier Meilhac, Christian Lefebvre d'Hellencourt, Nicolas Diotel
{"title":"糖尿病、成人神经发生和脑重塑:来自啮齿动物和斑马鱼模型的新见解。","authors":"Anne-Claire Dorsemans, David Couret, Anaïs Hoarau, Olivier Meilhac, Christian Lefebvre d'Hellencourt, Nicolas Diotel","doi":"10.1080/23262133.2017.1281862","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalence of diabetes rapidly increased during the last decades in association with important changes in lifestyle. Diabetes and hyperglycemia are well-known for inducing deleterious effects on physiologic processes, increasing for instance cardiovascular diseases, nephropathy, retinopathy and foot ulceration. Interestingly, diabetes also impairs brain morphology and functions such as (1) decreased neurogenesis (proliferation, differentiation and cell survival), (2) decreased brain volumes, (3) increased blood-brain barrier leakage, (4) increased cognitive impairments, as well as (5) increased stroke incidence and worse neurologic outcomes following stroke. Importantly, diabetes is positively associated with a higher risk to develop Alzheimer disease. In this context, we aim at reviewing the impact of diabetes on neural stem cell proliferation, newborn cell differentiation and survival in a homeostatic context or following stroke. We also report the effects of hyper- and hypoglycemia on the blood-brain barrier physiology through modifications of tight junctions and transporters. Finally, we discuss the implication of diabetes on cognition and behavior.</p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":"4 1","pages":"e1281862"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2017.1281862","citationCount":"33","resultStr":"{\"title\":\"Diabetes, adult neurogenesis and brain remodeling: New insights from rodent and zebrafish models.\",\"authors\":\"Anne-Claire Dorsemans, David Couret, Anaïs Hoarau, Olivier Meilhac, Christian Lefebvre d'Hellencourt, Nicolas Diotel\",\"doi\":\"10.1080/23262133.2017.1281862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prevalence of diabetes rapidly increased during the last decades in association with important changes in lifestyle. Diabetes and hyperglycemia are well-known for inducing deleterious effects on physiologic processes, increasing for instance cardiovascular diseases, nephropathy, retinopathy and foot ulceration. Interestingly, diabetes also impairs brain morphology and functions such as (1) decreased neurogenesis (proliferation, differentiation and cell survival), (2) decreased brain volumes, (3) increased blood-brain barrier leakage, (4) increased cognitive impairments, as well as (5) increased stroke incidence and worse neurologic outcomes following stroke. Importantly, diabetes is positively associated with a higher risk to develop Alzheimer disease. In this context, we aim at reviewing the impact of diabetes on neural stem cell proliferation, newborn cell differentiation and survival in a homeostatic context or following stroke. We also report the effects of hyper- and hypoglycemia on the blood-brain barrier physiology through modifications of tight junctions and transporters. Finally, we discuss the implication of diabetes on cognition and behavior.</p>\",\"PeriodicalId\":74274,\"journal\":{\"name\":\"Neurogenesis (Austin, Tex.)\",\"volume\":\"4 1\",\"pages\":\"e1281862\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23262133.2017.1281862\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurogenesis (Austin, Tex.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23262133.2017.1281862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogenesis (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23262133.2017.1281862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Diabetes, adult neurogenesis and brain remodeling: New insights from rodent and zebrafish models.
The prevalence of diabetes rapidly increased during the last decades in association with important changes in lifestyle. Diabetes and hyperglycemia are well-known for inducing deleterious effects on physiologic processes, increasing for instance cardiovascular diseases, nephropathy, retinopathy and foot ulceration. Interestingly, diabetes also impairs brain morphology and functions such as (1) decreased neurogenesis (proliferation, differentiation and cell survival), (2) decreased brain volumes, (3) increased blood-brain barrier leakage, (4) increased cognitive impairments, as well as (5) increased stroke incidence and worse neurologic outcomes following stroke. Importantly, diabetes is positively associated with a higher risk to develop Alzheimer disease. In this context, we aim at reviewing the impact of diabetes on neural stem cell proliferation, newborn cell differentiation and survival in a homeostatic context or following stroke. We also report the effects of hyper- and hypoglycemia on the blood-brain barrier physiology through modifications of tight junctions and transporters. Finally, we discuss the implication of diabetes on cognition and behavior.