利用gnfet设计三元逻辑及算术电路

IF 1.8 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zarin Tasnim Sandhie;Farid Uddin Ahmed;Masud H. Chowdhury
{"title":"利用gnfet设计三元逻辑及算术电路","authors":"Zarin Tasnim Sandhie;Farid Uddin Ahmed;Masud H. Chowdhury","doi":"10.1109/OJNANO.2020.3020567","DOIUrl":null,"url":null,"abstract":"Multiple valued logic (MVL) can represent an exponentially higher number of data/information compared to the binary logic for the same number of logic bits. Compared to the conventional and other emerging device technologies, Graphene Nano Ribbon Field Effect Transistor (GNRFET) appears to be very promising for designing MVL logic gates and arithmetic circuits due to some exceptional electrical properties of the GNRFET, e.g., the ability to control the threshold voltage by changing the width of the GNR. Variation of the threshold voltage is one of the prescribed techniques to achieve multiple voltage levels to implement the MVL circuit. This paper introduces a design approach for ternary logic gates and circuits using MOS-type GNRFET. The designs of basic ternary logic gates like inverters, NAND, NOR, and ternary arithmetic circuits like the ternary decoder, 3:1 multiplexer, and ternary half-adder are demonstrated using GNRFET. A comparative analysis of the GNRFET based ternary logic gates and circuits and those based on the conventional CMOS and CNTFET technologies is performed using delay, total power, and power-delay-product (PDP) as the metrics. The simulation and analysis are performed using the H-SPICE tool with a GNRFET model available on the Nanohub website.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"1 ","pages":"77-87"},"PeriodicalIF":1.8000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/OJNANO.2020.3020567","citationCount":"31","resultStr":"{\"title\":\"Design of Ternary Logic and Arithmetic Circuits Using GNRFET\",\"authors\":\"Zarin Tasnim Sandhie;Farid Uddin Ahmed;Masud H. Chowdhury\",\"doi\":\"10.1109/OJNANO.2020.3020567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple valued logic (MVL) can represent an exponentially higher number of data/information compared to the binary logic for the same number of logic bits. Compared to the conventional and other emerging device technologies, Graphene Nano Ribbon Field Effect Transistor (GNRFET) appears to be very promising for designing MVL logic gates and arithmetic circuits due to some exceptional electrical properties of the GNRFET, e.g., the ability to control the threshold voltage by changing the width of the GNR. Variation of the threshold voltage is one of the prescribed techniques to achieve multiple voltage levels to implement the MVL circuit. This paper introduces a design approach for ternary logic gates and circuits using MOS-type GNRFET. The designs of basic ternary logic gates like inverters, NAND, NOR, and ternary arithmetic circuits like the ternary decoder, 3:1 multiplexer, and ternary half-adder are demonstrated using GNRFET. A comparative analysis of the GNRFET based ternary logic gates and circuits and those based on the conventional CMOS and CNTFET technologies is performed using delay, total power, and power-delay-product (PDP) as the metrics. The simulation and analysis are performed using the H-SPICE tool with a GNRFET model available on the Nanohub website.\",\"PeriodicalId\":446,\"journal\":{\"name\":\"IEEE Open Journal of Nanotechnology\",\"volume\":\"1 \",\"pages\":\"77-87\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/OJNANO.2020.3020567\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9184220/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9184220/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 31

摘要

对于相同数量的逻辑位,多值逻辑(MVL)与二进制逻辑相比可以表示指数级高的数据/信息数量。与传统和其他新兴器件技术相比,石墨烯纳米带场效应晶体管(GNRFET)由于其特殊的电学特性,例如通过改变GNR的宽度来控制阈值电压的能力,在设计MVL逻辑门和算术电路方面显得非常有前途。阈值电压的变化是实现MVL电路的多个电压电平的规定技术之一。本文介绍了一种利用mos型GNRFET设计三元逻辑门及电路的方法。使用GNRFET演示了基本三元逻辑门的设计,如逆变器,NAND, NOR和三元算术电路,如三元解码器,3:1多路复用器和三元半加法器。以延迟、总功率和功率延迟积(PDP)为指标,对基于GNRFET的三元逻辑门电路和基于传统CMOS和CNTFET技术的三元逻辑门电路进行了比较分析。利用H-SPICE工具和Nanohub网站上提供的GNRFET模型进行了仿真和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Ternary Logic and Arithmetic Circuits Using GNRFET
Multiple valued logic (MVL) can represent an exponentially higher number of data/information compared to the binary logic for the same number of logic bits. Compared to the conventional and other emerging device technologies, Graphene Nano Ribbon Field Effect Transistor (GNRFET) appears to be very promising for designing MVL logic gates and arithmetic circuits due to some exceptional electrical properties of the GNRFET, e.g., the ability to control the threshold voltage by changing the width of the GNR. Variation of the threshold voltage is one of the prescribed techniques to achieve multiple voltage levels to implement the MVL circuit. This paper introduces a design approach for ternary logic gates and circuits using MOS-type GNRFET. The designs of basic ternary logic gates like inverters, NAND, NOR, and ternary arithmetic circuits like the ternary decoder, 3:1 multiplexer, and ternary half-adder are demonstrated using GNRFET. A comparative analysis of the GNRFET based ternary logic gates and circuits and those based on the conventional CMOS and CNTFET technologies is performed using delay, total power, and power-delay-product (PDP) as the metrics. The simulation and analysis are performed using the H-SPICE tool with a GNRFET model available on the Nanohub website.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
17.60%
发文量
10
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信