{"title":"建设性反馈的重要性:自上而下调控在神经回路发育中的意义。","authors":"Andrew D Thompson, Chinfei Chen","doi":"10.1080/23262133.2017.1287553","DOIUrl":null,"url":null,"abstract":"<p><p>Neural circuits in sensory pathways develop through a general strategy of overproduction of synapses followed by activity-driven pruning to fine-tune connectivity for optimal function. The early visual pathway, consisting of the retina → visual thalamus → primary visual cortex, has served for decades as a powerful model system for probing the mechanisms and logic of this process. In addition to these feedforward projections, the early visual pathway also includes a substantial feedback component in the form of corticothalamic projections from the deepest layer of primary visual cortex. The role of this feedback in visual processing has been studied extensively in mature animals, yet historically, its role in development has received comparatively little attention. Recent technological advances allowing for selective manipulation of neural activity in development led to the uncovering of a role for feedback in guiding the refinement of the forward projection from retina to visual thalamus. Here we discuss the implications of feedback exerting influence on the development of sensory pathways. We propose several possible advantages to constructing neural circuits with top-down regulation, and discuss the potential significance of this finding for certain neurologic disorders.</p>","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2017.1287553","citationCount":"1","resultStr":"{\"title\":\"The importance of constructive feedback: Implications of top-down regulation in the development of neural circuits.\",\"authors\":\"Andrew D Thompson, Chinfei Chen\",\"doi\":\"10.1080/23262133.2017.1287553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural circuits in sensory pathways develop through a general strategy of overproduction of synapses followed by activity-driven pruning to fine-tune connectivity for optimal function. The early visual pathway, consisting of the retina → visual thalamus → primary visual cortex, has served for decades as a powerful model system for probing the mechanisms and logic of this process. In addition to these feedforward projections, the early visual pathway also includes a substantial feedback component in the form of corticothalamic projections from the deepest layer of primary visual cortex. The role of this feedback in visual processing has been studied extensively in mature animals, yet historically, its role in development has received comparatively little attention. Recent technological advances allowing for selective manipulation of neural activity in development led to the uncovering of a role for feedback in guiding the refinement of the forward projection from retina to visual thalamus. Here we discuss the implications of feedback exerting influence on the development of sensory pathways. We propose several possible advantages to constructing neural circuits with top-down regulation, and discuss the potential significance of this finding for certain neurologic disorders.</p>\",\"PeriodicalId\":74274,\"journal\":{\"name\":\"Neurogenesis (Austin, Tex.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23262133.2017.1287553\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurogenesis (Austin, Tex.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23262133.2017.1287553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogenesis (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23262133.2017.1287553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
The importance of constructive feedback: Implications of top-down regulation in the development of neural circuits.
Neural circuits in sensory pathways develop through a general strategy of overproduction of synapses followed by activity-driven pruning to fine-tune connectivity for optimal function. The early visual pathway, consisting of the retina → visual thalamus → primary visual cortex, has served for decades as a powerful model system for probing the mechanisms and logic of this process. In addition to these feedforward projections, the early visual pathway also includes a substantial feedback component in the form of corticothalamic projections from the deepest layer of primary visual cortex. The role of this feedback in visual processing has been studied extensively in mature animals, yet historically, its role in development has received comparatively little attention. Recent technological advances allowing for selective manipulation of neural activity in development led to the uncovering of a role for feedback in guiding the refinement of the forward projection from retina to visual thalamus. Here we discuss the implications of feedback exerting influence on the development of sensory pathways. We propose several possible advantages to constructing neural circuits with top-down regulation, and discuss the potential significance of this finding for certain neurologic disorders.