{"title":"缺电子酚的高效o -三氟甲基化的流动电合成","authors":"Johannes Bernd, Andreas Terfort","doi":"10.1016/j.elecom.2023.107545","DOIUrl":null,"url":null,"abstract":"<div><p>A sustainable strategy for <em>O</em>-trifluoromethylation of electron-deficient phenols by combining electrochemical synthesis with flow technology is presented. The reaction is optimized by screening experiments to establish a fast and efficient flow protocol. Simultaneous anodic oxidation of Langlois reagent and the phenols in a micro flow cell leads to direct preparation of trifluoromethyl ethers in yields up to 90%. This one-step protocol is tolerant of several functional groups, shows good regioselectivity and works without any chemical oxidants and catalysts by using electrical current as an inexpensive and sustainable reagent.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"154 ","pages":"Article 107545"},"PeriodicalIF":4.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow electrosynthesis for efficient O-trifluoromethylation of electron-deficient phenols\",\"authors\":\"Johannes Bernd, Andreas Terfort\",\"doi\":\"10.1016/j.elecom.2023.107545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A sustainable strategy for <em>O</em>-trifluoromethylation of electron-deficient phenols by combining electrochemical synthesis with flow technology is presented. The reaction is optimized by screening experiments to establish a fast and efficient flow protocol. Simultaneous anodic oxidation of Langlois reagent and the phenols in a micro flow cell leads to direct preparation of trifluoromethyl ethers in yields up to 90%. This one-step protocol is tolerant of several functional groups, shows good regioselectivity and works without any chemical oxidants and catalysts by using electrical current as an inexpensive and sustainable reagent.</p></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"154 \",\"pages\":\"Article 107545\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248123001194\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248123001194","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Flow electrosynthesis for efficient O-trifluoromethylation of electron-deficient phenols
A sustainable strategy for O-trifluoromethylation of electron-deficient phenols by combining electrochemical synthesis with flow technology is presented. The reaction is optimized by screening experiments to establish a fast and efficient flow protocol. Simultaneous anodic oxidation of Langlois reagent and the phenols in a micro flow cell leads to direct preparation of trifluoromethyl ethers in yields up to 90%. This one-step protocol is tolerant of several functional groups, shows good regioselectivity and works without any chemical oxidants and catalysts by using electrical current as an inexpensive and sustainable reagent.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.