几何和完整量子计算

IF 23.9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Jiang Zhang , Thi Ha Kyaw , Stefan Filipp , Leong-Chuan Kwek , Erik Sjöqvist , Dianmin Tong
{"title":"几何和完整量子计算","authors":"Jiang Zhang ,&nbsp;Thi Ha Kyaw ,&nbsp;Stefan Filipp ,&nbsp;Leong-Chuan Kwek ,&nbsp;Erik Sjöqvist ,&nbsp;Dianmin Tong","doi":"10.1016/j.physrep.2023.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>Geometric and holonomic quantum computation utilizes intrinsic geometric properties of quantum-mechanical state spaces to realize quantum logic gates. Since both geometric phases and quantum holonomies are global quantities depending only on the evolution paths of quantum systems, quantum gates based on them possess built-in resilience to certain kinds of errors. This review provides an introduction to the topic as well as gives an overview of the theoretical and experimental progress for constructing geometric and holonomic quantum gates and how to combine them with other error-resistant techniques.</p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1027 ","pages":"Pages 1-53"},"PeriodicalIF":23.9000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Geometric and holonomic quantum computation\",\"authors\":\"Jiang Zhang ,&nbsp;Thi Ha Kyaw ,&nbsp;Stefan Filipp ,&nbsp;Leong-Chuan Kwek ,&nbsp;Erik Sjöqvist ,&nbsp;Dianmin Tong\",\"doi\":\"10.1016/j.physrep.2023.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Geometric and holonomic quantum computation utilizes intrinsic geometric properties of quantum-mechanical state spaces to realize quantum logic gates. Since both geometric phases and quantum holonomies are global quantities depending only on the evolution paths of quantum systems, quantum gates based on them possess built-in resilience to certain kinds of errors. This review provides an introduction to the topic as well as gives an overview of the theoretical and experimental progress for constructing geometric and holonomic quantum gates and how to combine them with other error-resistant techniques.</p></div>\",\"PeriodicalId\":404,\"journal\":{\"name\":\"Physics Reports\",\"volume\":\"1027 \",\"pages\":\"Pages 1-53\"},\"PeriodicalIF\":23.9000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Reports\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370157323002065\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157323002065","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

摘要

几何完整量子计算利用量子力学状态空间固有的几何特性来实现量子逻辑门。由于几何相位和量子完整都是全局量,只依赖于量子系统的演化路径,基于它们的量子门对某些类型的错误具有内在的弹性。本文介绍了这一主题,并概述了构建几何和完整量子门的理论和实验进展,以及如何将它们与其他抗误差技术相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric and holonomic quantum computation

Geometric and holonomic quantum computation utilizes intrinsic geometric properties of quantum-mechanical state spaces to realize quantum logic gates. Since both geometric phases and quantum holonomies are global quantities depending only on the evolution paths of quantum systems, quantum gates based on them possess built-in resilience to certain kinds of errors. This review provides an introduction to the topic as well as gives an overview of the theoretical and experimental progress for constructing geometric and holonomic quantum gates and how to combine them with other error-resistant techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Reports
Physics Reports 物理-物理:综合
CiteScore
56.10
自引率
0.70%
发文量
102
审稿时长
9.1 weeks
期刊介绍: Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信