Mengmeng Sang , Li Feng , Ph.D. , Ang Dong , Claudia Gragnoli , Christopher Griffin , Rongling Wu , Ph.D.
{"title":"肿瘤-微环境串扰的基因组物理学","authors":"Mengmeng Sang , Li Feng , Ph.D. , Ang Dong , Claudia Gragnoli , Christopher Griffin , Rongling Wu , Ph.D.","doi":"10.1016/j.physrep.2023.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>The recent years have witnessed the explosive application of sequencing technologies to study tumor–microenvironment interactions and their role in shaping intratumoral heterogeneity, neoplastic progression and tumor resistance to anticancer drugs. Statistical modeling is an essential tool to decipher the function of cellular interactions from massive amounts of transcriptomic data. However, most available approaches can only capture the existence of cell interconnections, failing to reveal how cells communicate with each other in (bi)directional, signed, and weighted manners. Widely used ligand–receptor signaling analysis can discern pairwise or dyadic cell–cell interactions, but it has little power to characterize the rock–paper–scissors cycle of interdependence among a large number of interacting cells. Here, we introduce an emerging statistical physics<span> theory, derived from the interdisciplinary cross-pollination of ecosystem theory, allometric scaling law, evolutionary game theory, predator–prey theory, and graph theory. This new theory, coined quasi-dynamic game-graph theory (qdGGT), is formulated as generalized Lotka–Volterra predator–prey equations, allowing cell–cell crosstalk networks across any level of organizational space to be inferred from any type of genomic data with any dimension. qdGGT can visualize and interrogate how genes reciprocally telegraph signals among cells from different biogeographical locations and how this process orchestrates tumor processes. We demonstrate the application of qdGGT to identify genes that drive intercellular cooperation or competition and chart mechanistic cell–cell interaction networks that mediate the tumor–microenvironment crosstalk.</span></p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1029 ","pages":"Pages 1-51"},"PeriodicalIF":23.9000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The genomic physics of tumor–microenvironment crosstalk\",\"authors\":\"Mengmeng Sang , Li Feng , Ph.D. , Ang Dong , Claudia Gragnoli , Christopher Griffin , Rongling Wu , Ph.D.\",\"doi\":\"10.1016/j.physrep.2023.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recent years have witnessed the explosive application of sequencing technologies to study tumor–microenvironment interactions and their role in shaping intratumoral heterogeneity, neoplastic progression and tumor resistance to anticancer drugs. Statistical modeling is an essential tool to decipher the function of cellular interactions from massive amounts of transcriptomic data. However, most available approaches can only capture the existence of cell interconnections, failing to reveal how cells communicate with each other in (bi)directional, signed, and weighted manners. Widely used ligand–receptor signaling analysis can discern pairwise or dyadic cell–cell interactions, but it has little power to characterize the rock–paper–scissors cycle of interdependence among a large number of interacting cells. Here, we introduce an emerging statistical physics<span> theory, derived from the interdisciplinary cross-pollination of ecosystem theory, allometric scaling law, evolutionary game theory, predator–prey theory, and graph theory. This new theory, coined quasi-dynamic game-graph theory (qdGGT), is formulated as generalized Lotka–Volterra predator–prey equations, allowing cell–cell crosstalk networks across any level of organizational space to be inferred from any type of genomic data with any dimension. qdGGT can visualize and interrogate how genes reciprocally telegraph signals among cells from different biogeographical locations and how this process orchestrates tumor processes. We demonstrate the application of qdGGT to identify genes that drive intercellular cooperation or competition and chart mechanistic cell–cell interaction networks that mediate the tumor–microenvironment crosstalk.</span></p></div>\",\"PeriodicalId\":404,\"journal\":{\"name\":\"Physics Reports\",\"volume\":\"1029 \",\"pages\":\"Pages 1-51\"},\"PeriodicalIF\":23.9000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Reports\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370157323002089\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157323002089","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The genomic physics of tumor–microenvironment crosstalk
The recent years have witnessed the explosive application of sequencing technologies to study tumor–microenvironment interactions and their role in shaping intratumoral heterogeneity, neoplastic progression and tumor resistance to anticancer drugs. Statistical modeling is an essential tool to decipher the function of cellular interactions from massive amounts of transcriptomic data. However, most available approaches can only capture the existence of cell interconnections, failing to reveal how cells communicate with each other in (bi)directional, signed, and weighted manners. Widely used ligand–receptor signaling analysis can discern pairwise or dyadic cell–cell interactions, but it has little power to characterize the rock–paper–scissors cycle of interdependence among a large number of interacting cells. Here, we introduce an emerging statistical physics theory, derived from the interdisciplinary cross-pollination of ecosystem theory, allometric scaling law, evolutionary game theory, predator–prey theory, and graph theory. This new theory, coined quasi-dynamic game-graph theory (qdGGT), is formulated as generalized Lotka–Volterra predator–prey equations, allowing cell–cell crosstalk networks across any level of organizational space to be inferred from any type of genomic data with any dimension. qdGGT can visualize and interrogate how genes reciprocally telegraph signals among cells from different biogeographical locations and how this process orchestrates tumor processes. We demonstrate the application of qdGGT to identify genes that drive intercellular cooperation or competition and chart mechanistic cell–cell interaction networks that mediate the tumor–microenvironment crosstalk.
期刊介绍:
Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.