Manu Mannazhi , Saga Bergqvist , Sandra Török , Daniel Madsen , Pál Tóth , Kim Cuong Le , Per-Erik Bengtsson
{"title":"氯化钾的加入大大降低了煤烟的光吸收效率","authors":"Manu Mannazhi , Saga Bergqvist , Sandra Török , Daniel Madsen , Pál Tóth , Kim Cuong Le , Per-Erik Bengtsson","doi":"10.1016/j.proci.2022.07.143","DOIUrl":null,"url":null,"abstract":"<div><p>Optical properties of soot have been investigated with and without potassium chloride (KCl) salt added to the soot formation process in a premixed ethylene/air flame. A strong decrease in optical absorption efficiency of the soot was observed with increasing amounts of KCl added to the fuel based on the method of fluence curve analysis using laser-induced incandescence (LII). To understand the reason for this major change in absorption efficiency, probe sampling and subsequent structural analysis were performed using Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM). Raman spectra indicated no significant difference between the nanostructure of soot from the two main cases; a reference case without addition of salt, and a case with addition of ∼600 ppm K. In the case of K addition, HRTEM showed slightly less compact nanostructure signified by somewhat shorter interlayer spacing, and significantly different polar ordering of carbon lamellae indicating smaller primary particles, thereby supporting previous TEM studies on soot sampled from the same flames showing smaller soot particle sizes with KCl addition. The impact on soot absorption properties from the observed differences is discussed. It is speculated that the main cause for the lower absorption with K addition is a quantum confinement effect due to reduction in soot particle size.</p></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"39 1","pages":"Pages 867-876"},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strongly reduced optical absorption efficiency of soot with addition of potassium chloride in sooting premixed flames\",\"authors\":\"Manu Mannazhi , Saga Bergqvist , Sandra Török , Daniel Madsen , Pál Tóth , Kim Cuong Le , Per-Erik Bengtsson\",\"doi\":\"10.1016/j.proci.2022.07.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optical properties of soot have been investigated with and without potassium chloride (KCl) salt added to the soot formation process in a premixed ethylene/air flame. A strong decrease in optical absorption efficiency of the soot was observed with increasing amounts of KCl added to the fuel based on the method of fluence curve analysis using laser-induced incandescence (LII). To understand the reason for this major change in absorption efficiency, probe sampling and subsequent structural analysis were performed using Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM). Raman spectra indicated no significant difference between the nanostructure of soot from the two main cases; a reference case without addition of salt, and a case with addition of ∼600 ppm K. In the case of K addition, HRTEM showed slightly less compact nanostructure signified by somewhat shorter interlayer spacing, and significantly different polar ordering of carbon lamellae indicating smaller primary particles, thereby supporting previous TEM studies on soot sampled from the same flames showing smaller soot particle sizes with KCl addition. The impact on soot absorption properties from the observed differences is discussed. It is speculated that the main cause for the lower absorption with K addition is a quantum confinement effect due to reduction in soot particle size.</p></div>\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"39 1\",\"pages\":\"Pages 867-876\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1540748922001845\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748922001845","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Strongly reduced optical absorption efficiency of soot with addition of potassium chloride in sooting premixed flames
Optical properties of soot have been investigated with and without potassium chloride (KCl) salt added to the soot formation process in a premixed ethylene/air flame. A strong decrease in optical absorption efficiency of the soot was observed with increasing amounts of KCl added to the fuel based on the method of fluence curve analysis using laser-induced incandescence (LII). To understand the reason for this major change in absorption efficiency, probe sampling and subsequent structural analysis were performed using Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM). Raman spectra indicated no significant difference between the nanostructure of soot from the two main cases; a reference case without addition of salt, and a case with addition of ∼600 ppm K. In the case of K addition, HRTEM showed slightly less compact nanostructure signified by somewhat shorter interlayer spacing, and significantly different polar ordering of carbon lamellae indicating smaller primary particles, thereby supporting previous TEM studies on soot sampled from the same flames showing smaller soot particle sizes with KCl addition. The impact on soot absorption properties from the observed differences is discussed. It is speculated that the main cause for the lower absorption with K addition is a quantum confinement effect due to reduction in soot particle size.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.