Arianna Remiddi, Giuseppe Indelicato, Pasquale Eduardo Lapenna, Francesco Creta
{"title":"单喷射器和多喷射器火箭燃烧室的高效时间分辨热表征","authors":"Arianna Remiddi, Giuseppe Indelicato, Pasquale Eduardo Lapenna, Francesco Creta","doi":"10.1016/j.proci.2022.07.231","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>In this work, an efficient methodology for the time-resolved thermal characterization of rocket combustion chambers at reasonable computational cost is presented. The multi-scale and multi-physics numerical framework tackles simultaneously an arbitrary number of contiguous domains, either fluid or solid, and takes advantage of several modeling solutions aimed at </span>stiffness reduction<span>. Non-premixed turbulent combustion is handled through a flamelet-based approach accounting for non adiabatic and non equilibrium effects, thermal wall functions adapted for rocket operating conditions are employed to overcome the stiffness induced by the boundary layer, and a coupling strategy is implemented to guarantee temperature and heat flux continuity across the interfaces. The coupling strategy is based on a </span></span>Conjugate Heat Transfer (CHT) condition, yielding the interface temperature as a result of a heat flux continuity constraint, and is then reformulated for convection-dominated phenomena, allowing for a further reduction of the computational cost. This allows for the simulation of long time windows, of industrial and experimental relevance. In particular, the solution of the chemically reactive flow is initialized with a CHT condition, and replaced, upon attainment of a statistical </span>fluid dynamic<span> steady state, by an equivalent convective boundary condition. The numerical framework is validated and tested by means of several 2D and 3D cases, the latter consisting in both single-element and multi-element experimental combustor chambers operating in rocket-like conditions.</span></p></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"39 4","pages":"Pages 5043-5052"},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient time-resolved thermal characterization of single and multi-injector rocket combustion chambers\",\"authors\":\"Arianna Remiddi, Giuseppe Indelicato, Pasquale Eduardo Lapenna, Francesco Creta\",\"doi\":\"10.1016/j.proci.2022.07.231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>In this work, an efficient methodology for the time-resolved thermal characterization of rocket combustion chambers at reasonable computational cost is presented. The multi-scale and multi-physics numerical framework tackles simultaneously an arbitrary number of contiguous domains, either fluid or solid, and takes advantage of several modeling solutions aimed at </span>stiffness reduction<span>. Non-premixed turbulent combustion is handled through a flamelet-based approach accounting for non adiabatic and non equilibrium effects, thermal wall functions adapted for rocket operating conditions are employed to overcome the stiffness induced by the boundary layer, and a coupling strategy is implemented to guarantee temperature and heat flux continuity across the interfaces. The coupling strategy is based on a </span></span>Conjugate Heat Transfer (CHT) condition, yielding the interface temperature as a result of a heat flux continuity constraint, and is then reformulated for convection-dominated phenomena, allowing for a further reduction of the computational cost. This allows for the simulation of long time windows, of industrial and experimental relevance. In particular, the solution of the chemically reactive flow is initialized with a CHT condition, and replaced, upon attainment of a statistical </span>fluid dynamic<span> steady state, by an equivalent convective boundary condition. The numerical framework is validated and tested by means of several 2D and 3D cases, the latter consisting in both single-element and multi-element experimental combustor chambers operating in rocket-like conditions.</span></p></div>\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"39 4\",\"pages\":\"Pages 5043-5052\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1540748922002577\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748922002577","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Efficient time-resolved thermal characterization of single and multi-injector rocket combustion chambers
In this work, an efficient methodology for the time-resolved thermal characterization of rocket combustion chambers at reasonable computational cost is presented. The multi-scale and multi-physics numerical framework tackles simultaneously an arbitrary number of contiguous domains, either fluid or solid, and takes advantage of several modeling solutions aimed at stiffness reduction. Non-premixed turbulent combustion is handled through a flamelet-based approach accounting for non adiabatic and non equilibrium effects, thermal wall functions adapted for rocket operating conditions are employed to overcome the stiffness induced by the boundary layer, and a coupling strategy is implemented to guarantee temperature and heat flux continuity across the interfaces. The coupling strategy is based on a Conjugate Heat Transfer (CHT) condition, yielding the interface temperature as a result of a heat flux continuity constraint, and is then reformulated for convection-dominated phenomena, allowing for a further reduction of the computational cost. This allows for the simulation of long time windows, of industrial and experimental relevance. In particular, the solution of the chemically reactive flow is initialized with a CHT condition, and replaced, upon attainment of a statistical fluid dynamic steady state, by an equivalent convective boundary condition. The numerical framework is validated and tested by means of several 2D and 3D cases, the latter consisting in both single-element and multi-element experimental combustor chambers operating in rocket-like conditions.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.