{"title":"复制还是不复制?这就是问题所在!从黑猩猩到人类科技文化的基础","authors":"Héctor M. Manrique , Michael J. Walker","doi":"10.1016/j.plrev.2023.02.005","DOIUrl":null,"url":null,"abstract":"<div><p>A prerequisite for copying innovative behaviour faithfully is the capacity of observers' brains, regarded as ‘hierarchically mechanistic minds’, to overcome cognitive ‘surprisal’ (see 2.), by maximising the evidence for their internal models, through active inference. Unlike modern humans, chimpanzees and other great apes show considerable limitations in their ability, or ‘Zone of Bounded Surprisal’, to overcome cognitive surprisal induced by innovative or unorthodox behaviour that rarely, therefore, is copied precisely or accurately. Most can copy adequately what is within their phenotypically habitual behavioural repertoire, in which technology plays scant part. Widespread intra- and intergenerational social transmission of complex technological innovations is not a hall-mark of great-ape taxa. 3 Ma, precursors of the genus Homo made stone artefacts, and stone-flaking likely was habitual before 2 Ma. After that time, early Homo erectus has left traces of technological innovations, though faithful copying of these and their intra- and intergenerational social transmission were rare before 1 Ma. This likely owed to a cerebral infrastructure of interconnected neuronal systems more limited than ours. Brains were smaller in size than ours, and cerebral neuronal systems ceased to develop when early Homo erectus attained full adult maturity by the mid-teen years, whereas its development continues until our mid-twenties nowadays. Pleistocene Homo underwent remarkable evolutionary adaptation of neurobiological propensities, and cerebral aspects are discussed that, it is proposed here, plausibly, were fundamental for faithful copying, which underpinned social transmission of technologies, cumulative learning, and culture. Here, observers' responses to an innovation are more important for ensuring its transmission than is an innovator's production of it, because, by themselves, the minimal cognitive prerequisites that are needed for encoding and assimilating innovations are insufficient for practical outcomes to accumulate and spread intra- and intergenerationally.</p></div>","PeriodicalId":403,"journal":{"name":"Physics of Life Reviews","volume":"45 ","pages":"Pages 6-24"},"PeriodicalIF":13.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"To copy or not to copy? That is the question! From chimpanzees to the foundation of human technological culture\",\"authors\":\"Héctor M. Manrique , Michael J. Walker\",\"doi\":\"10.1016/j.plrev.2023.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A prerequisite for copying innovative behaviour faithfully is the capacity of observers' brains, regarded as ‘hierarchically mechanistic minds’, to overcome cognitive ‘surprisal’ (see 2.), by maximising the evidence for their internal models, through active inference. Unlike modern humans, chimpanzees and other great apes show considerable limitations in their ability, or ‘Zone of Bounded Surprisal’, to overcome cognitive surprisal induced by innovative or unorthodox behaviour that rarely, therefore, is copied precisely or accurately. Most can copy adequately what is within their phenotypically habitual behavioural repertoire, in which technology plays scant part. Widespread intra- and intergenerational social transmission of complex technological innovations is not a hall-mark of great-ape taxa. 3 Ma, precursors of the genus Homo made stone artefacts, and stone-flaking likely was habitual before 2 Ma. After that time, early Homo erectus has left traces of technological innovations, though faithful copying of these and their intra- and intergenerational social transmission were rare before 1 Ma. This likely owed to a cerebral infrastructure of interconnected neuronal systems more limited than ours. Brains were smaller in size than ours, and cerebral neuronal systems ceased to develop when early Homo erectus attained full adult maturity by the mid-teen years, whereas its development continues until our mid-twenties nowadays. Pleistocene Homo underwent remarkable evolutionary adaptation of neurobiological propensities, and cerebral aspects are discussed that, it is proposed here, plausibly, were fundamental for faithful copying, which underpinned social transmission of technologies, cumulative learning, and culture. Here, observers' responses to an innovation are more important for ensuring its transmission than is an innovator's production of it, because, by themselves, the minimal cognitive prerequisites that are needed for encoding and assimilating innovations are insufficient for practical outcomes to accumulate and spread intra- and intergenerationally.</p></div>\",\"PeriodicalId\":403,\"journal\":{\"name\":\"Physics of Life Reviews\",\"volume\":\"45 \",\"pages\":\"Pages 6-24\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Life Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157106452300026X\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Life Reviews","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157106452300026X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
To copy or not to copy? That is the question! From chimpanzees to the foundation of human technological culture
A prerequisite for copying innovative behaviour faithfully is the capacity of observers' brains, regarded as ‘hierarchically mechanistic minds’, to overcome cognitive ‘surprisal’ (see 2.), by maximising the evidence for their internal models, through active inference. Unlike modern humans, chimpanzees and other great apes show considerable limitations in their ability, or ‘Zone of Bounded Surprisal’, to overcome cognitive surprisal induced by innovative or unorthodox behaviour that rarely, therefore, is copied precisely or accurately. Most can copy adequately what is within their phenotypically habitual behavioural repertoire, in which technology plays scant part. Widespread intra- and intergenerational social transmission of complex technological innovations is not a hall-mark of great-ape taxa. 3 Ma, precursors of the genus Homo made stone artefacts, and stone-flaking likely was habitual before 2 Ma. After that time, early Homo erectus has left traces of technological innovations, though faithful copying of these and their intra- and intergenerational social transmission were rare before 1 Ma. This likely owed to a cerebral infrastructure of interconnected neuronal systems more limited than ours. Brains were smaller in size than ours, and cerebral neuronal systems ceased to develop when early Homo erectus attained full adult maturity by the mid-teen years, whereas its development continues until our mid-twenties nowadays. Pleistocene Homo underwent remarkable evolutionary adaptation of neurobiological propensities, and cerebral aspects are discussed that, it is proposed here, plausibly, were fundamental for faithful copying, which underpinned social transmission of technologies, cumulative learning, and culture. Here, observers' responses to an innovation are more important for ensuring its transmission than is an innovator's production of it, because, by themselves, the minimal cognitive prerequisites that are needed for encoding and assimilating innovations are insufficient for practical outcomes to accumulate and spread intra- and intergenerationally.
期刊介绍:
Physics of Life Reviews, published quarterly, is an international journal dedicated to review articles on the physics of living systems, complex phenomena in biological systems, and related fields including artificial life, robotics, mathematical bio-semiotics, and artificial intelligent systems. Serving as a unifying force across disciplines, the journal explores living systems comprehensively—from molecules to populations, genetics to mind, and artificial systems modeling these phenomena. Inviting reviews from actively engaged researchers, the journal seeks broad, critical, and accessible contributions that address recent progress and sometimes controversial accounts in the field.