{"title":"横向声振荡诱导旋涡喷射火焰动态熄灭","authors":"Clément Patat , Françoise Baillot , Jean-Bernard Blaisot , Éric Domingues , Guillaume Vignat , Preethi Rajendram Soundararajan , Antoine Renaud , Daniel Durox , Sébastien Candel","doi":"10.1016/j.proci.2022.08.029","DOIUrl":null,"url":null,"abstract":"<div><p>Recent experiments on a laboratory scale annular system comprising multiple injectors<span><span><span> (namely, MICCA-Spray), indicate that combustion instabilities coupled with azimuthal modes may induce large amplitude oscillations, which under certain conditions, lead to blow out of some of the flames established in the system, a phenomenon designated as dynamical blow out (DBO). An attempt is made in the present investigation to reproduce this phenomenon in a linear array of injectors (namely, TACC-Spray), where the acoustic field is externally applied to flames established by injector units that are identical to those used in the </span>annular combustor. The acoustic field is generated by driver units placed on the lateral sides of a </span>rectangular cavity. The pressure level induced in TACC-Spray can reach a peak value of 1700 Pa in a frequency range extending from 680 to 780 Hz, which corresponds to the typical frequency of azimuthal instabilities observed in the annular system. A theoretical model based on dimensional analysis serves to guide the choice of operating conditions that may lead to the DBO phenomenon. Experiments carried out in TACC-Spray and MICCA-Spray are then used to determine the DBO boundary, define the conditions that need to be fulfilled to observe this phenomenon, and gather high-speed visualizations providing some insights on the mechanisms that induce blow out.</span></p></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"39 4","pages":"Pages 4651-4659"},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Swirling spray flames dynamical blow out induced by transverse acoustic oscillations\",\"authors\":\"Clément Patat , Françoise Baillot , Jean-Bernard Blaisot , Éric Domingues , Guillaume Vignat , Preethi Rajendram Soundararajan , Antoine Renaud , Daniel Durox , Sébastien Candel\",\"doi\":\"10.1016/j.proci.2022.08.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent experiments on a laboratory scale annular system comprising multiple injectors<span><span><span> (namely, MICCA-Spray), indicate that combustion instabilities coupled with azimuthal modes may induce large amplitude oscillations, which under certain conditions, lead to blow out of some of the flames established in the system, a phenomenon designated as dynamical blow out (DBO). An attempt is made in the present investigation to reproduce this phenomenon in a linear array of injectors (namely, TACC-Spray), where the acoustic field is externally applied to flames established by injector units that are identical to those used in the </span>annular combustor. The acoustic field is generated by driver units placed on the lateral sides of a </span>rectangular cavity. The pressure level induced in TACC-Spray can reach a peak value of 1700 Pa in a frequency range extending from 680 to 780 Hz, which corresponds to the typical frequency of azimuthal instabilities observed in the annular system. A theoretical model based on dimensional analysis serves to guide the choice of operating conditions that may lead to the DBO phenomenon. Experiments carried out in TACC-Spray and MICCA-Spray are then used to determine the DBO boundary, define the conditions that need to be fulfilled to observe this phenomenon, and gather high-speed visualizations providing some insights on the mechanisms that induce blow out.</span></p></div>\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"39 4\",\"pages\":\"Pages 4651-4659\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1540748922003170\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748922003170","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Swirling spray flames dynamical blow out induced by transverse acoustic oscillations
Recent experiments on a laboratory scale annular system comprising multiple injectors (namely, MICCA-Spray), indicate that combustion instabilities coupled with azimuthal modes may induce large amplitude oscillations, which under certain conditions, lead to blow out of some of the flames established in the system, a phenomenon designated as dynamical blow out (DBO). An attempt is made in the present investigation to reproduce this phenomenon in a linear array of injectors (namely, TACC-Spray), where the acoustic field is externally applied to flames established by injector units that are identical to those used in the annular combustor. The acoustic field is generated by driver units placed on the lateral sides of a rectangular cavity. The pressure level induced in TACC-Spray can reach a peak value of 1700 Pa in a frequency range extending from 680 to 780 Hz, which corresponds to the typical frequency of azimuthal instabilities observed in the annular system. A theoretical model based on dimensional analysis serves to guide the choice of operating conditions that may lead to the DBO phenomenon. Experiments carried out in TACC-Spray and MICCA-Spray are then used to determine the DBO boundary, define the conditions that need to be fulfilled to observe this phenomenon, and gather high-speed visualizations providing some insights on the mechanisms that induce blow out.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.