{"title":"基于分离液滴结构的柴油替代混合物设计与评价","authors":"Álvaro Muelas, Diego Aranda, Javier Ballester","doi":"10.1016/j.proci.2022.07.099","DOIUrl":null,"url":null,"abstract":"<div><p>The development of simplified surrogate mixtures able to replicate combustion-related behaviors of chemically complex fuels is essential for their simulation with computational tools, a key step towards the design of high-efficiency and low-emission combustion applications. This work proposes to use the isolated droplet configuration as a benchmark to formulate and validate surrogates that capture the vaporization and soot production characteristics of a first-fill diesel and a diesel-biodiesel mixture. To that end, droplet vaporization experiments and a multicomponent model were coupled to produce blends matching the evaporation behavior, whereas the soot tendency was incorporated through tests at the ASTM <span>D1322</span><svg><path></path></svg> smoke point lamp and the Oxygen Extended Sooting Index (OESI). The so-obtained surrogate blends were subsequently validated for both characteristics. Their evaporation curves proved to match remarkably well those obtained for the target fuels, with noticeable improvements when increasing the number of compounds in the mixture. As for the sooting behavior, the proposed blends achieved a good emulation in terms of the design parameter (OESI), confirming the validity of the proposed methodology. On the other hand, an additional and independent validation of the sooting propensity through the quantification of the mass of soot produced by isolated droplets under a high-temperature and reducing atmosphere revealed significantly higher soot yields for the surrogates when compared to the target fuels. These results highlight the relevance of the configuration used when designing and validating surrogates, since the same blends can provide substantial differences when evaluated through different sooting indices.</p></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"39 2","pages":"Pages 2483-2492"},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and evaluation of surrogate mixtures for diesel based on the isolated droplet configuration\",\"authors\":\"Álvaro Muelas, Diego Aranda, Javier Ballester\",\"doi\":\"10.1016/j.proci.2022.07.099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of simplified surrogate mixtures able to replicate combustion-related behaviors of chemically complex fuels is essential for their simulation with computational tools, a key step towards the design of high-efficiency and low-emission combustion applications. This work proposes to use the isolated droplet configuration as a benchmark to formulate and validate surrogates that capture the vaporization and soot production characteristics of a first-fill diesel and a diesel-biodiesel mixture. To that end, droplet vaporization experiments and a multicomponent model were coupled to produce blends matching the evaporation behavior, whereas the soot tendency was incorporated through tests at the ASTM <span>D1322</span><svg><path></path></svg> smoke point lamp and the Oxygen Extended Sooting Index (OESI). The so-obtained surrogate blends were subsequently validated for both characteristics. Their evaporation curves proved to match remarkably well those obtained for the target fuels, with noticeable improvements when increasing the number of compounds in the mixture. As for the sooting behavior, the proposed blends achieved a good emulation in terms of the design parameter (OESI), confirming the validity of the proposed methodology. On the other hand, an additional and independent validation of the sooting propensity through the quantification of the mass of soot produced by isolated droplets under a high-temperature and reducing atmosphere revealed significantly higher soot yields for the surrogates when compared to the target fuels. These results highlight the relevance of the configuration used when designing and validating surrogates, since the same blends can provide substantial differences when evaluated through different sooting indices.</p></div>\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"39 2\",\"pages\":\"Pages 2483-2492\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1540748922001237\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748922001237","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Design and evaluation of surrogate mixtures for diesel based on the isolated droplet configuration
The development of simplified surrogate mixtures able to replicate combustion-related behaviors of chemically complex fuels is essential for their simulation with computational tools, a key step towards the design of high-efficiency and low-emission combustion applications. This work proposes to use the isolated droplet configuration as a benchmark to formulate and validate surrogates that capture the vaporization and soot production characteristics of a first-fill diesel and a diesel-biodiesel mixture. To that end, droplet vaporization experiments and a multicomponent model were coupled to produce blends matching the evaporation behavior, whereas the soot tendency was incorporated through tests at the ASTM D1322 smoke point lamp and the Oxygen Extended Sooting Index (OESI). The so-obtained surrogate blends were subsequently validated for both characteristics. Their evaporation curves proved to match remarkably well those obtained for the target fuels, with noticeable improvements when increasing the number of compounds in the mixture. As for the sooting behavior, the proposed blends achieved a good emulation in terms of the design parameter (OESI), confirming the validity of the proposed methodology. On the other hand, an additional and independent validation of the sooting propensity through the quantification of the mass of soot produced by isolated droplets under a high-temperature and reducing atmosphere revealed significantly higher soot yields for the surrogates when compared to the target fuels. These results highlight the relevance of the configuration used when designing and validating surrogates, since the same blends can provide substantial differences when evaluated through different sooting indices.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.