Weiqing Li , Hui Qian , Panpan Xu , Kai Hou , Qiying Zhang , Wengang Qu , Wenhao Ren , Yao Chen
{"title":"中国黄河流域风成—河流相互作用:沉积特征和沉积层序物源的启示","authors":"Weiqing Li , Hui Qian , Panpan Xu , Kai Hou , Qiying Zhang , Wengang Qu , Wenhao Ren , Yao Chen","doi":"10.1016/j.jhydrol.2023.129903","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding environmental changes requires the characterization of potential interactions between aeolian and fluvial systems. This study aimed to identify the sedimentary characteristics, provenance, and transport of sediments of the Yellow River Basin, as well as the processes and geomorphological effects of aeolian-fluvial interactions using end-member modelling analysis (EMMA), multidimensional scaling (MDS), and principal component analysis (PCA). Samples (n = 107) collected from sedimentary sequences in the source area, upper, middle, and lower reaches were analyzed for grain size and major element contents. The results showed that sediments in the source area of the Yellow River mainly originated from the Tibetan Plateau, whereas the input of materials from the Chinese Loess Plateau (CLP) gradually increased from the upper to lower reaches. The sediment transport was jointly controlled by simultaneous or alternating aeolian and fluvial processes. Asynchronism in aeolian activity and rainfall and the non-uniformity of runoff and sediment sources resulted in a concentration of aeolian-fluvial interactions in the river reaches traversing through the deserts and CLP. Fluvial sediments in the upper reaches consisted of wash loads deposited in slow-moving water, whereas rapid replenishment of sediment from the CLP in the middle reaches increased sediment transport capacity, thereby enhancing the uniformity of sedimentary characteristics from the upper to lower reaches. Moreover, numerous gullies in the CLP resulted in increased intensities of aeolian-fluvial interactions, thereby accelerating severe sedimentation in the lower reaches. This study can act as a reference for paleoclimatic reconstruction and for soil and water conservation in large-scale watersheds across a range of climatic zones.</p></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"624 ","pages":"Article 129903"},"PeriodicalIF":5.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aeolian-fluvial interactions in the Yellow River Basin, China: Insights from sedimentary characteristics and provenance of the sedimentary sequences\",\"authors\":\"Weiqing Li , Hui Qian , Panpan Xu , Kai Hou , Qiying Zhang , Wengang Qu , Wenhao Ren , Yao Chen\",\"doi\":\"10.1016/j.jhydrol.2023.129903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding environmental changes requires the characterization of potential interactions between aeolian and fluvial systems. This study aimed to identify the sedimentary characteristics, provenance, and transport of sediments of the Yellow River Basin, as well as the processes and geomorphological effects of aeolian-fluvial interactions using end-member modelling analysis (EMMA), multidimensional scaling (MDS), and principal component analysis (PCA). Samples (n = 107) collected from sedimentary sequences in the source area, upper, middle, and lower reaches were analyzed for grain size and major element contents. The results showed that sediments in the source area of the Yellow River mainly originated from the Tibetan Plateau, whereas the input of materials from the Chinese Loess Plateau (CLP) gradually increased from the upper to lower reaches. The sediment transport was jointly controlled by simultaneous or alternating aeolian and fluvial processes. Asynchronism in aeolian activity and rainfall and the non-uniformity of runoff and sediment sources resulted in a concentration of aeolian-fluvial interactions in the river reaches traversing through the deserts and CLP. Fluvial sediments in the upper reaches consisted of wash loads deposited in slow-moving water, whereas rapid replenishment of sediment from the CLP in the middle reaches increased sediment transport capacity, thereby enhancing the uniformity of sedimentary characteristics from the upper to lower reaches. Moreover, numerous gullies in the CLP resulted in increased intensities of aeolian-fluvial interactions, thereby accelerating severe sedimentation in the lower reaches. This study can act as a reference for paleoclimatic reconstruction and for soil and water conservation in large-scale watersheds across a range of climatic zones.</p></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"624 \",\"pages\":\"Article 129903\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169423008454\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169423008454","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Aeolian-fluvial interactions in the Yellow River Basin, China: Insights from sedimentary characteristics and provenance of the sedimentary sequences
Understanding environmental changes requires the characterization of potential interactions between aeolian and fluvial systems. This study aimed to identify the sedimentary characteristics, provenance, and transport of sediments of the Yellow River Basin, as well as the processes and geomorphological effects of aeolian-fluvial interactions using end-member modelling analysis (EMMA), multidimensional scaling (MDS), and principal component analysis (PCA). Samples (n = 107) collected from sedimentary sequences in the source area, upper, middle, and lower reaches were analyzed for grain size and major element contents. The results showed that sediments in the source area of the Yellow River mainly originated from the Tibetan Plateau, whereas the input of materials from the Chinese Loess Plateau (CLP) gradually increased from the upper to lower reaches. The sediment transport was jointly controlled by simultaneous or alternating aeolian and fluvial processes. Asynchronism in aeolian activity and rainfall and the non-uniformity of runoff and sediment sources resulted in a concentration of aeolian-fluvial interactions in the river reaches traversing through the deserts and CLP. Fluvial sediments in the upper reaches consisted of wash loads deposited in slow-moving water, whereas rapid replenishment of sediment from the CLP in the middle reaches increased sediment transport capacity, thereby enhancing the uniformity of sedimentary characteristics from the upper to lower reaches. Moreover, numerous gullies in the CLP resulted in increased intensities of aeolian-fluvial interactions, thereby accelerating severe sedimentation in the lower reaches. This study can act as a reference for paleoclimatic reconstruction and for soil and water conservation in large-scale watersheds across a range of climatic zones.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.