Meng Wu , Jifang Liu , Xiaogang Wang , Hongbo Zeng
{"title":"通过可调分子相互作用的抗菌表面的最新进展:纳米建筑学和生物工程应用","authors":"Meng Wu , Jifang Liu , Xiaogang Wang , Hongbo Zeng","doi":"10.1016/j.cocis.2023.101707","DOIUrl":null,"url":null,"abstract":"<div><p>Infections can lead to severe health issues, even death. Surfaces, such as those of biomedical devices, implants, textiles, tables and doorknobs, play a crucial role as carriers for pathogens to migrate, attach and proliferate. Implementing surfaces with antimicrobial properties offers a reliable and long-lasting approach to combat surface transmission of germs, minimize microbial colonization, and reduce infections. In this review, we present recent advancements in antimicrobial surfaces, categorized into four groups based on their action mechanisms: antifouling, bactericidal, antifouling and bactericidal, and dynamic or stimuli-responsive surfaces. The work highlights the fabrication processes and properties of each category, along with discussing their structure-performance relationships. Special attention is given to various anchoring strategies involving tunable molecular interactions. The review also introduces relevant biomedical applications.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"66 ","pages":"Article 101707"},"PeriodicalIF":7.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in antimicrobial surfaces via tunable molecular interactions: Nanoarchitectonics and bioengineering applications\",\"authors\":\"Meng Wu , Jifang Liu , Xiaogang Wang , Hongbo Zeng\",\"doi\":\"10.1016/j.cocis.2023.101707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Infections can lead to severe health issues, even death. Surfaces, such as those of biomedical devices, implants, textiles, tables and doorknobs, play a crucial role as carriers for pathogens to migrate, attach and proliferate. Implementing surfaces with antimicrobial properties offers a reliable and long-lasting approach to combat surface transmission of germs, minimize microbial colonization, and reduce infections. In this review, we present recent advancements in antimicrobial surfaces, categorized into four groups based on their action mechanisms: antifouling, bactericidal, antifouling and bactericidal, and dynamic or stimuli-responsive surfaces. The work highlights the fabrication processes and properties of each category, along with discussing their structure-performance relationships. Special attention is given to various anchoring strategies involving tunable molecular interactions. The review also introduces relevant biomedical applications.</p></div>\",\"PeriodicalId\":293,\"journal\":{\"name\":\"Current Opinion in Colloid & Interface Science\",\"volume\":\"66 \",\"pages\":\"Article 101707\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Colloid & Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359029423000328\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029423000328","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Recent advances in antimicrobial surfaces via tunable molecular interactions: Nanoarchitectonics and bioengineering applications
Infections can lead to severe health issues, even death. Surfaces, such as those of biomedical devices, implants, textiles, tables and doorknobs, play a crucial role as carriers for pathogens to migrate, attach and proliferate. Implementing surfaces with antimicrobial properties offers a reliable and long-lasting approach to combat surface transmission of germs, minimize microbial colonization, and reduce infections. In this review, we present recent advancements in antimicrobial surfaces, categorized into four groups based on their action mechanisms: antifouling, bactericidal, antifouling and bactericidal, and dynamic or stimuli-responsive surfaces. The work highlights the fabrication processes and properties of each category, along with discussing their structure-performance relationships. Special attention is given to various anchoring strategies involving tunable molecular interactions. The review also introduces relevant biomedical applications.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.