{"title":"空气和水分稳定稳健的生物聚合物钯催化的CC键形成及其在杀菌剂合成中的应用","authors":"Ke Chen, Guangzu He, Qiong Tang","doi":"10.1016/j.jiec.2023.04.006","DOIUrl":null,"url":null,"abstract":"<div><p>Cellulose supported bio-heterogeneous polymeric Pd(II) catalyst, stable to air and moisture, was designed and characterized with different spectroscopic techniques including FESEM, TEM, XPS, XRD, ICP-AES and EDX. The Pd(II) catalyst showed high catalytic performance (0.2 to 0.0009 mol%) to the Suzuki-Miyaura C<img>C cross-coupling reaction of aromatic halides and aryl diazonium salts with a range of organoboronic acids to produce the respective biaryl product in up to 97% yield. Biologically active Boscalid, a fungicide that effectively inhibits the growth of fungal pathogens like ascomycetes on fruits and plants, could also be constructed through using this catalyst. Additionally, it was possible to recover the Pd(II) catalyst from the reaction medium and reused it repeatedly without significantly degrading its catalytic efficiency.</p></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"124 ","pages":"Pages 165-174"},"PeriodicalIF":5.9000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Air and moisture stable robust bio-polymeric palladium catalyzed CC bond formation and its application to the synthesis of fungicidal\",\"authors\":\"Ke Chen, Guangzu He, Qiong Tang\",\"doi\":\"10.1016/j.jiec.2023.04.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cellulose supported bio-heterogeneous polymeric Pd(II) catalyst, stable to air and moisture, was designed and characterized with different spectroscopic techniques including FESEM, TEM, XPS, XRD, ICP-AES and EDX. The Pd(II) catalyst showed high catalytic performance (0.2 to 0.0009 mol%) to the Suzuki-Miyaura C<img>C cross-coupling reaction of aromatic halides and aryl diazonium salts with a range of organoboronic acids to produce the respective biaryl product in up to 97% yield. Biologically active Boscalid, a fungicide that effectively inhibits the growth of fungal pathogens like ascomycetes on fruits and plants, could also be constructed through using this catalyst. Additionally, it was possible to recover the Pd(II) catalyst from the reaction medium and reused it repeatedly without significantly degrading its catalytic efficiency.</p></div>\",\"PeriodicalId\":363,\"journal\":{\"name\":\"Journal of Industrial and Engineering Chemistry\",\"volume\":\"124 \",\"pages\":\"Pages 165-174\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1226086X2300223X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X2300223X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Air and moisture stable robust bio-polymeric palladium catalyzed CC bond formation and its application to the synthesis of fungicidal
Cellulose supported bio-heterogeneous polymeric Pd(II) catalyst, stable to air and moisture, was designed and characterized with different spectroscopic techniques including FESEM, TEM, XPS, XRD, ICP-AES and EDX. The Pd(II) catalyst showed high catalytic performance (0.2 to 0.0009 mol%) to the Suzuki-Miyaura CC cross-coupling reaction of aromatic halides and aryl diazonium salts with a range of organoboronic acids to produce the respective biaryl product in up to 97% yield. Biologically active Boscalid, a fungicide that effectively inhibits the growth of fungal pathogens like ascomycetes on fruits and plants, could also be constructed through using this catalyst. Additionally, it was possible to recover the Pd(II) catalyst from the reaction medium and reused it repeatedly without significantly degrading its catalytic efficiency.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.