细菌胞外电子交换机制。

2区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Advances in Microbial Physiology Pub Date : 2016-01-01 Epub Date: 2016-03-24 DOI:10.1016/bs.ampbs.2016.02.002
G F White, M J Edwards, L Gomez-Perez, D J Richardson, J N Butt, T A Clarke
{"title":"细菌胞外电子交换机制。","authors":"G F White,&nbsp;M J Edwards,&nbsp;L Gomez-Perez,&nbsp;D J Richardson,&nbsp;J N Butt,&nbsp;T A Clarke","doi":"10.1016/bs.ampbs.2016.02.002","DOIUrl":null,"url":null,"abstract":"<p><p>The biochemical mechanisms by which microbes interact with extracellular soluble metal ions and insoluble redox-active minerals have been the focus of intense research over the last three decades. The process presents two challenges to the microorganism. Firstly, electrons have to be transported at the cell surface, which in Gram-negative bacteria presents an additional problem of electron transfer across the ~6nm of the outer membrane. Secondly, the electrons must be transferred to or from the terminal electron acceptors or donors. This review covers the known mechanisms that bacteria use to transport electrons across the cell envelope to external electron donors/acceptors. In Gram-negative bacteria, electron transfer across the outer membrane involves the use of an outer membrane β-barrel and cytochrome. These can be in the form of a porin-cytochrome protein, such as Cyc2 of Acidithiobacillus ferrooxidans, or a multiprotein porin-cytochrome complex like MtrCAB of Shewanella oneidensis MR-1. For mineral-respiring organisms, there is the additional challenge of transferring the electrons from the cell to mineral surface. For the strict anaerobe Geobacter sulfurreducens this requires electron transfer through conductive pili to associated cytochrome OmcS that directly reduces Fe(III)oxides, while the facultative anaerobe S. oneidensis MR-1 accomplishes mineral reduction through direct membrane contact, contact through filamentous extensions and soluble flavin shuttles, all of which require the outer membrane cytochromes MtrC and OmcA in addition to secreted flavin.</p>","PeriodicalId":50953,"journal":{"name":"Advances in Microbial Physiology","volume":"68 ","pages":"87-138"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.ampbs.2016.02.002","citationCount":"120","resultStr":"{\"title\":\"Mechanisms of Bacterial Extracellular Electron Exchange.\",\"authors\":\"G F White,&nbsp;M J Edwards,&nbsp;L Gomez-Perez,&nbsp;D J Richardson,&nbsp;J N Butt,&nbsp;T A Clarke\",\"doi\":\"10.1016/bs.ampbs.2016.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The biochemical mechanisms by which microbes interact with extracellular soluble metal ions and insoluble redox-active minerals have been the focus of intense research over the last three decades. The process presents two challenges to the microorganism. Firstly, electrons have to be transported at the cell surface, which in Gram-negative bacteria presents an additional problem of electron transfer across the ~6nm of the outer membrane. Secondly, the electrons must be transferred to or from the terminal electron acceptors or donors. This review covers the known mechanisms that bacteria use to transport electrons across the cell envelope to external electron donors/acceptors. In Gram-negative bacteria, electron transfer across the outer membrane involves the use of an outer membrane β-barrel and cytochrome. These can be in the form of a porin-cytochrome protein, such as Cyc2 of Acidithiobacillus ferrooxidans, or a multiprotein porin-cytochrome complex like MtrCAB of Shewanella oneidensis MR-1. For mineral-respiring organisms, there is the additional challenge of transferring the electrons from the cell to mineral surface. For the strict anaerobe Geobacter sulfurreducens this requires electron transfer through conductive pili to associated cytochrome OmcS that directly reduces Fe(III)oxides, while the facultative anaerobe S. oneidensis MR-1 accomplishes mineral reduction through direct membrane contact, contact through filamentous extensions and soluble flavin shuttles, all of which require the outer membrane cytochromes MtrC and OmcA in addition to secreted flavin.</p>\",\"PeriodicalId\":50953,\"journal\":{\"name\":\"Advances in Microbial Physiology\",\"volume\":\"68 \",\"pages\":\"87-138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/bs.ampbs.2016.02.002\",\"citationCount\":\"120\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Microbial Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ampbs.2016.02.002\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/3/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Microbial Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ampbs.2016.02.002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/3/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 120

摘要

微生物与细胞外可溶性金属离子和不溶性氧化活性矿物质相互作用的生化机制是近三十年来研究的热点。这一过程对微生物提出了两个挑战。首先,电子必须在细胞表面传输,这在革兰氏阴性菌中提出了一个额外的问题,即电子在约6nm的外膜上传输。其次,电子必须转移到或从终端电子受体或给体。本文综述了细菌通过细胞包膜向外部电子供体/受体传递电子的已知机制。在革兰氏阴性菌中,电子在外膜上的转移涉及到外膜β桶和细胞色素的使用。它们可以以孔蛋白-细胞色素蛋白的形式存在,如氧化亚铁硫杆菌的Cyc2,或多蛋白孔蛋白-细胞色素复合物的形式存在,如希瓦氏菌mr1的MtrCAB。对于呼吸矿物质的生物体来说,将电子从细胞转移到矿物质表面是一个额外的挑战。对于严格的厌氧菌硫还原地杆菌来说,这需要通过导电菌毛将电子转移到相关的细胞色素OmcS,直接还原Fe(III)氧化物,而兼性厌氧菌S. oneidensis MR-1通过直接膜接触、丝状延伸接触和可溶性黄素梭来完成矿物还原,除了分泌黄素外,所有这些都需要外膜细胞色素MtrC和OmcA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanisms of Bacterial Extracellular Electron Exchange.

The biochemical mechanisms by which microbes interact with extracellular soluble metal ions and insoluble redox-active minerals have been the focus of intense research over the last three decades. The process presents two challenges to the microorganism. Firstly, electrons have to be transported at the cell surface, which in Gram-negative bacteria presents an additional problem of electron transfer across the ~6nm of the outer membrane. Secondly, the electrons must be transferred to or from the terminal electron acceptors or donors. This review covers the known mechanisms that bacteria use to transport electrons across the cell envelope to external electron donors/acceptors. In Gram-negative bacteria, electron transfer across the outer membrane involves the use of an outer membrane β-barrel and cytochrome. These can be in the form of a porin-cytochrome protein, such as Cyc2 of Acidithiobacillus ferrooxidans, or a multiprotein porin-cytochrome complex like MtrCAB of Shewanella oneidensis MR-1. For mineral-respiring organisms, there is the additional challenge of transferring the electrons from the cell to mineral surface. For the strict anaerobe Geobacter sulfurreducens this requires electron transfer through conductive pili to associated cytochrome OmcS that directly reduces Fe(III)oxides, while the facultative anaerobe S. oneidensis MR-1 accomplishes mineral reduction through direct membrane contact, contact through filamentous extensions and soluble flavin shuttles, all of which require the outer membrane cytochromes MtrC and OmcA in addition to secreted flavin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Microbial Physiology
Advances in Microbial Physiology 生物-生化与分子生物学
CiteScore
6.20
自引率
0.00%
发文量
16
期刊介绍: Advances in Microbial Physiology publishes topical and important reviews, interpreting physiology to include all material that contributes to our understanding of how microorganisms and their component parts work. First published in 1967, the editors have always striven to interpret microbial physiology in the broadest context and have never restricted the contents to traditional views of whole cell physiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信