不适定点神经元模型。

IF 2.3 4区 医学 Q1 Neuroscience
Journal of Mathematical Neuroscience Pub Date : 2016-12-01 Epub Date: 2016-04-30 DOI:10.1186/s13408-016-0039-8
Bjørn Fredrik Nielsen, John Wyller
{"title":"不适定点神经元模型。","authors":"Bjørn Fredrik Nielsen,&nbsp;John Wyller","doi":"10.1186/s13408-016-0039-8","DOIUrl":null,"url":null,"abstract":"<p><p>We show that point-neuron models with a Heaviside firing rate function can be ill posed. More specifically, the initial-condition-to-solution map might become discontinuous in finite time. Consequently, if finite precision arithmetic is used, then it is virtually impossible to guarantee the accurate numerical solution of such models. If a smooth firing rate function is employed, then standard ODE theory implies that point-neuron models are well posed. Nevertheless, in the steep firing rate regime, the problem may become close to ill posed, and the error amplification, in finite time, can be very large. This observation is illuminated by numerical experiments. We conclude that, if a steep firing rate function is employed, then minor round-off errors can have a devastating effect on simulations, unless proper error-control schemes are used. </p>","PeriodicalId":54271,"journal":{"name":"Journal of Mathematical Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13408-016-0039-8","citationCount":"6","resultStr":"{\"title\":\"Ill-Posed Point Neuron Models.\",\"authors\":\"Bjørn Fredrik Nielsen,&nbsp;John Wyller\",\"doi\":\"10.1186/s13408-016-0039-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We show that point-neuron models with a Heaviside firing rate function can be ill posed. More specifically, the initial-condition-to-solution map might become discontinuous in finite time. Consequently, if finite precision arithmetic is used, then it is virtually impossible to guarantee the accurate numerical solution of such models. If a smooth firing rate function is employed, then standard ODE theory implies that point-neuron models are well posed. Nevertheless, in the steep firing rate regime, the problem may become close to ill posed, and the error amplification, in finite time, can be very large. This observation is illuminated by numerical experiments. We conclude that, if a steep firing rate function is employed, then minor round-off errors can have a devastating effect on simulations, unless proper error-control schemes are used. </p>\",\"PeriodicalId\":54271,\"journal\":{\"name\":\"Journal of Mathematical Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13408-016-0039-8\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13408-016-0039-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13408-016-0039-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/4/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 6

摘要

我们证明了带有Heaviside发射速率函数的点神经元模型可以是病态的。更具体地说,初始条件到解映射可能在有限时间内不连续。因此,如果使用有限精度算法,则几乎不可能保证这些模型的精确数值解。如果使用平滑发射速率函数,则标准ODE理论意味着点神经元模型是良好定姿的。然而,在陡峭的发射速率范围内,问题可能变得接近病态,并且在有限时间内误差放大可能非常大。数值实验证实了这一观察结果。我们得出的结论是,如果采用陡峭的发射速率函数,那么除非使用适当的误差控制方案,否则微小的舍入误差会对模拟产生破坏性影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ill-Posed Point Neuron Models.

Ill-Posed Point Neuron Models.

Ill-Posed Point Neuron Models.

Ill-Posed Point Neuron Models.

We show that point-neuron models with a Heaviside firing rate function can be ill posed. More specifically, the initial-condition-to-solution map might become discontinuous in finite time. Consequently, if finite precision arithmetic is used, then it is virtually impossible to guarantee the accurate numerical solution of such models. If a smooth firing rate function is employed, then standard ODE theory implies that point-neuron models are well posed. Nevertheless, in the steep firing rate regime, the problem may become close to ill posed, and the error amplification, in finite time, can be very large. This observation is illuminated by numerical experiments. We conclude that, if a steep firing rate function is employed, then minor round-off errors can have a devastating effect on simulations, unless proper error-control schemes are used.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Neuroscience
Journal of Mathematical Neuroscience Neuroscience-Neuroscience (miscellaneous)
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: The Journal of Mathematical Neuroscience (JMN) publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions. It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged. Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system in general and the human brain in particular are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信