基于图像分割的静电表面蛋白质三维结构分析。

Journal of molecular biochemistry Pub Date : 2014-01-01 Epub Date: 2014-02-28
Dimitrios Vlachakis, Spyridon Champeris Tsaniras, Georgia Tsiliki, Vasileios Megalooikonomou, Sophia Kossida
{"title":"基于图像分割的静电表面蛋白质三维结构分析。","authors":"Dimitrios Vlachakis, Spyridon Champeris Tsaniras, Georgia Tsiliki, Vasileios Megalooikonomou, Sophia Kossida","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we present a novel strategy to analyse and characterize proteins using protein molecular electro-static surfaces. Our approach starts by calculating a series of distinct molecular surfaces for each protein that are subsequently flattened out, thus reducing 3D information noise. RGB images are appropriately scaled by means of standard image processing techniques whilst retaining the weight information of each protein's molecular electrostatic surface. Then homogeneous areas in the protein surface are estimated based on unsupervised clustering of the 3D images, while performing similarity searches. This is a computationally fast approach, which efficiently highlights interesting structural areas among a group of proteins. Multiple protein electrostatic surfaces can be combined together and in conjunction with their processed images, they can provide the starting material for protein structural similarity and molecular docking experiments.</p>","PeriodicalId":73836,"journal":{"name":"Journal of molecular biochemistry","volume":"3 1","pages":"27-33"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981338/pdf/nihms808029.pdf","citationCount":"0","resultStr":"{\"title\":\"3D structural analysis of proteins using electrostatic surfaces based on image segmentation.\",\"authors\":\"Dimitrios Vlachakis, Spyridon Champeris Tsaniras, Georgia Tsiliki, Vasileios Megalooikonomou, Sophia Kossida\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herein, we present a novel strategy to analyse and characterize proteins using protein molecular electro-static surfaces. Our approach starts by calculating a series of distinct molecular surfaces for each protein that are subsequently flattened out, thus reducing 3D information noise. RGB images are appropriately scaled by means of standard image processing techniques whilst retaining the weight information of each protein's molecular electrostatic surface. Then homogeneous areas in the protein surface are estimated based on unsupervised clustering of the 3D images, while performing similarity searches. This is a computationally fast approach, which efficiently highlights interesting structural areas among a group of proteins. Multiple protein electrostatic surfaces can be combined together and in conjunction with their processed images, they can provide the starting material for protein structural similarity and molecular docking experiments.</p>\",\"PeriodicalId\":73836,\"journal\":{\"name\":\"Journal of molecular biochemistry\",\"volume\":\"3 1\",\"pages\":\"27-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981338/pdf/nihms808029.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular biochemistry","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/2/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们提出了一种利用蛋白质分子静电表面分析和表征蛋白质的新策略。我们的方法首先是为每种蛋白质计算一系列不同的分子表面,然后将其平铺,从而减少三维信息噪音。通过标准图像处理技术对 RGB 图像进行适当缩放,同时保留每个蛋白质分子静电表面的重量信息。然后,在对三维图像进行无监督聚类的基础上,估计蛋白质表面的同质区域,同时进行相似性搜索。这是一种计算速度极快的方法,能有效突出一组蛋白质中有趣的结构区域。多个蛋白质静电表面可以组合在一起,结合处理后的图像,它们可以为蛋白质结构相似性和分子对接实验提供起始材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

3D structural analysis of proteins using electrostatic surfaces based on image segmentation.

3D structural analysis of proteins using electrostatic surfaces based on image segmentation.

3D structural analysis of proteins using electrostatic surfaces based on image segmentation.

Herein, we present a novel strategy to analyse and characterize proteins using protein molecular electro-static surfaces. Our approach starts by calculating a series of distinct molecular surfaces for each protein that are subsequently flattened out, thus reducing 3D information noise. RGB images are appropriately scaled by means of standard image processing techniques whilst retaining the weight information of each protein's molecular electrostatic surface. Then homogeneous areas in the protein surface are estimated based on unsupervised clustering of the 3D images, while performing similarity searches. This is a computationally fast approach, which efficiently highlights interesting structural areas among a group of proteins. Multiple protein electrostatic surfaces can be combined together and in conjunction with their processed images, they can provide the starting material for protein structural similarity and molecular docking experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信