{"title":"核孔复合物:从结构角度到化学工具。","authors":"Richard W Wong","doi":"10.1016/j.chembiol.2015.10.001","DOIUrl":null,"url":null,"abstract":"<p><p>Nuclear pore complexes (NPCs) are the macromolecular turnstiles between the cytoplasm and the nucleus that control the trafficking of proteins, RNAs and viruses. The giant NPC structures are extremely complex. Here, I highlight several recent findings on NPC architectures, and briefly discuss how chemical biologists might use this information to design synthetic devices and improve strategies for nuclear drug delivery. </p>","PeriodicalId":9772,"journal":{"name":"Chemistry & biology","volume":"22 10","pages":"1285-7"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.chembiol.2015.10.001","citationCount":"15","resultStr":"{\"title\":\"Nuclear Pore Complex: From Structural View to Chemical Tools.\",\"authors\":\"Richard W Wong\",\"doi\":\"10.1016/j.chembiol.2015.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nuclear pore complexes (NPCs) are the macromolecular turnstiles between the cytoplasm and the nucleus that control the trafficking of proteins, RNAs and viruses. The giant NPC structures are extremely complex. Here, I highlight several recent findings on NPC architectures, and briefly discuss how chemical biologists might use this information to design synthetic devices and improve strategies for nuclear drug delivery. </p>\",\"PeriodicalId\":9772,\"journal\":{\"name\":\"Chemistry & biology\",\"volume\":\"22 10\",\"pages\":\"1285-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.chembiol.2015.10.001\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry & biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chembiol.2015.10.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chembiol.2015.10.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nuclear Pore Complex: From Structural View to Chemical Tools.
Nuclear pore complexes (NPCs) are the macromolecular turnstiles between the cytoplasm and the nucleus that control the trafficking of proteins, RNAs and viruses. The giant NPC structures are extremely complex. Here, I highlight several recent findings on NPC architectures, and briefly discuss how chemical biologists might use this information to design synthetic devices and improve strategies for nuclear drug delivery.