David De Wilde, Bram Trachet, Carole Van der Donckt, Bert Vandeghinste, Benedicte Descamps, Christian Vanhove, Guido R Y De Meyer, Patrick Segers
{"title":"动脉粥样硬化小鼠模型中易损斑块检测和定量的金颗粒增强计算机断层扫描。","authors":"David De Wilde, Bram Trachet, Carole Van der Donckt, Bert Vandeghinste, Benedicte Descamps, Christian Vanhove, Guido R Y De Meyer, Patrick Segers","doi":"10.2310/7290.2015.00009","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, an apolipoprotein E-deficient (ApoE-/-) mouse model with a mutation (C1039G+/-) in the fibrillin-1 (Fbn1) gene (ApoE-/-Fbn1C1039G+/- mouse model) was developed showing vulnerable atherosclerotic plaques, prone to rupture, in contrast to the ApoE-/- mouse model, where mainly stable plaques are present. One indicator of plaque vulnerability is the level of macrophage infiltration. Therefore, this study aimed to measure and quantify in vivo the macrophage infiltration related to plaque development and progression. For this purpose, 5-weekly consecutive gold nanoparticle-enhanced micro-computed tomography (microCT) scans were acquired. Histology confirmed that the presence of contrast agent coincided with the presence of macrophages. Based on the microCT scans, regions of the artery wall with contrast agent present were calculated and visualized in three dimensions. From this information, the contrast-enhanced area and contrast-enhanced centerline length were calculated for the branches of the carotid bifurcation (common, external, and internal carotid arteries). Statistical analysis showed a more rapid development and a larger extent of plaques in the ApoE-/-Fbn1C1039G+/- compared to the ApoE-/- mice. Regional differences between the branches were also observable and quantifiable. We developed and applied a methodology based on gold particle-enhanced microCT to visualize the presence of macrophages in atherosclerotic plaques in vivo.</p>","PeriodicalId":18855,"journal":{"name":"Molecular Imaging","volume":"14 ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2310/7290.2015.00009","citationCount":"2","resultStr":"{\"title\":\"Vulnerable plaque detection and quantification with gold particle-enhanced computed tomography in atherosclerotic mouse models.\",\"authors\":\"David De Wilde, Bram Trachet, Carole Van der Donckt, Bert Vandeghinste, Benedicte Descamps, Christian Vanhove, Guido R Y De Meyer, Patrick Segers\",\"doi\":\"10.2310/7290.2015.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, an apolipoprotein E-deficient (ApoE-/-) mouse model with a mutation (C1039G+/-) in the fibrillin-1 (Fbn1) gene (ApoE-/-Fbn1C1039G+/- mouse model) was developed showing vulnerable atherosclerotic plaques, prone to rupture, in contrast to the ApoE-/- mouse model, where mainly stable plaques are present. One indicator of plaque vulnerability is the level of macrophage infiltration. Therefore, this study aimed to measure and quantify in vivo the macrophage infiltration related to plaque development and progression. For this purpose, 5-weekly consecutive gold nanoparticle-enhanced micro-computed tomography (microCT) scans were acquired. Histology confirmed that the presence of contrast agent coincided with the presence of macrophages. Based on the microCT scans, regions of the artery wall with contrast agent present were calculated and visualized in three dimensions. From this information, the contrast-enhanced area and contrast-enhanced centerline length were calculated for the branches of the carotid bifurcation (common, external, and internal carotid arteries). Statistical analysis showed a more rapid development and a larger extent of plaques in the ApoE-/-Fbn1C1039G+/- compared to the ApoE-/- mice. Regional differences between the branches were also observable and quantifiable. We developed and applied a methodology based on gold particle-enhanced microCT to visualize the presence of macrophages in atherosclerotic plaques in vivo.</p>\",\"PeriodicalId\":18855,\"journal\":{\"name\":\"Molecular Imaging\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2310/7290.2015.00009\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2310/7290.2015.00009\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2310/7290.2015.00009","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Vulnerable plaque detection and quantification with gold particle-enhanced computed tomography in atherosclerotic mouse models.
Recently, an apolipoprotein E-deficient (ApoE-/-) mouse model with a mutation (C1039G+/-) in the fibrillin-1 (Fbn1) gene (ApoE-/-Fbn1C1039G+/- mouse model) was developed showing vulnerable atherosclerotic plaques, prone to rupture, in contrast to the ApoE-/- mouse model, where mainly stable plaques are present. One indicator of plaque vulnerability is the level of macrophage infiltration. Therefore, this study aimed to measure and quantify in vivo the macrophage infiltration related to plaque development and progression. For this purpose, 5-weekly consecutive gold nanoparticle-enhanced micro-computed tomography (microCT) scans were acquired. Histology confirmed that the presence of contrast agent coincided with the presence of macrophages. Based on the microCT scans, regions of the artery wall with contrast agent present were calculated and visualized in three dimensions. From this information, the contrast-enhanced area and contrast-enhanced centerline length were calculated for the branches of the carotid bifurcation (common, external, and internal carotid arteries). Statistical analysis showed a more rapid development and a larger extent of plaques in the ApoE-/-Fbn1C1039G+/- compared to the ApoE-/- mice. Regional differences between the branches were also observable and quantifiable. We developed and applied a methodology based on gold particle-enhanced microCT to visualize the presence of macrophages in atherosclerotic plaques in vivo.
Molecular ImagingBiochemistry, Genetics and Molecular Biology-Biotechnology
自引率
3.60%
发文量
21
期刊介绍:
Molecular Imaging is a peer-reviewed, open access journal highlighting the breadth of molecular imaging research from basic science to preclinical studies to human applications. This serves both the scientific and clinical communities by disseminating novel results and concepts relevant to the biological study of normal and disease processes in both basic and translational studies ranging from mice to humans.