通过动作电位机制的神经冲动不确定性传播。

IF 2.3 4区 医学 Q1 Neuroscience
Journal of Mathematical Neuroscience Pub Date : 2015-12-01 Epub Date: 2015-01-12 DOI:10.1186/2190-8567-5-3
Aldemar Torres Valderrama, Jeroen Witteveen, Maria Navarro, Joke Blom
{"title":"通过动作电位机制的神经冲动不确定性传播。","authors":"Aldemar Torres Valderrama,&nbsp;Jeroen Witteveen,&nbsp;Maria Navarro,&nbsp;Joke Blom","doi":"10.1186/2190-8567-5-3","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the propagation of probabilistic uncertainty through the action potential mechanism in nerve cells. Using the Hodgkin-Huxley (H-H) model and Stochastic Collocation on Sparse Grids, we obtain an accurate probabilistic interpretation of the deterministic dynamics of the transmembrane potential and gating variables. Using Sobol indices, out of the 11 uncertain parameters in the H-H model, we unravel two main uncertainty sources, which account for more than 90 % of the fluctuations in neuronal responses, and have a direct biophysical interpretation. We discuss how this interesting feature of the H-H model allows one to reduce greatly the probabilistic degrees of freedom in uncertainty quantification analyses, saving CPU time in numerical simulations and opening possibilities for probabilistic generalisation of other deterministic models of great importance in physiology and mathematical neuroscience. </p>","PeriodicalId":54271,"journal":{"name":"Journal of Mathematical Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2190-8567-5-3","citationCount":"10","resultStr":"{\"title\":\"Uncertainty Propagation in Nerve Impulses Through the Action Potential Mechanism.\",\"authors\":\"Aldemar Torres Valderrama,&nbsp;Jeroen Witteveen,&nbsp;Maria Navarro,&nbsp;Joke Blom\",\"doi\":\"10.1186/2190-8567-5-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate the propagation of probabilistic uncertainty through the action potential mechanism in nerve cells. Using the Hodgkin-Huxley (H-H) model and Stochastic Collocation on Sparse Grids, we obtain an accurate probabilistic interpretation of the deterministic dynamics of the transmembrane potential and gating variables. Using Sobol indices, out of the 11 uncertain parameters in the H-H model, we unravel two main uncertainty sources, which account for more than 90 % of the fluctuations in neuronal responses, and have a direct biophysical interpretation. We discuss how this interesting feature of the H-H model allows one to reduce greatly the probabilistic degrees of freedom in uncertainty quantification analyses, saving CPU time in numerical simulations and opening possibilities for probabilistic generalisation of other deterministic models of great importance in physiology and mathematical neuroscience. </p>\",\"PeriodicalId\":54271,\"journal\":{\"name\":\"Journal of Mathematical Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/2190-8567-5-3\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/2190-8567-5-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/1/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/2190-8567-5-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 10

摘要

我们通过神经细胞的动作电位机制来研究概率不确定性的传播。利用霍奇金-赫胥黎(H-H)模型和稀疏网格上的随机配置,我们获得了跨膜电位和门控变量的确定性动力学的精确概率解释。利用Sobol指数,在H-H模型的11个不确定参数中,我们揭示了两个主要的不确定源,它们占神经元响应波动的90%以上,并且具有直接的生物物理解释。我们讨论了H-H模型的这个有趣的特征如何允许人们在不确定性量化分析中大大降低概率自由度,节省数值模拟中的CPU时间,并为生理学和数学神经科学中非常重要的其他确定性模型的概率推广提供可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Uncertainty Propagation in Nerve Impulses Through the Action Potential Mechanism.

Uncertainty Propagation in Nerve Impulses Through the Action Potential Mechanism.

Uncertainty Propagation in Nerve Impulses Through the Action Potential Mechanism.

We investigate the propagation of probabilistic uncertainty through the action potential mechanism in nerve cells. Using the Hodgkin-Huxley (H-H) model and Stochastic Collocation on Sparse Grids, we obtain an accurate probabilistic interpretation of the deterministic dynamics of the transmembrane potential and gating variables. Using Sobol indices, out of the 11 uncertain parameters in the H-H model, we unravel two main uncertainty sources, which account for more than 90 % of the fluctuations in neuronal responses, and have a direct biophysical interpretation. We discuss how this interesting feature of the H-H model allows one to reduce greatly the probabilistic degrees of freedom in uncertainty quantification analyses, saving CPU time in numerical simulations and opening possibilities for probabilistic generalisation of other deterministic models of great importance in physiology and mathematical neuroscience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Neuroscience
Journal of Mathematical Neuroscience Neuroscience-Neuroscience (miscellaneous)
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: The Journal of Mathematical Neuroscience (JMN) publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions. It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged. Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system in general and the human brain in particular are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信