Shijun Dong , Goutham Kukkadapu , Jinhu Liang , Xiaobei Cheng , Scott W. Wagnon , William J. Pitz , Henry J. Curran
{"title":"了解1,2,4-三甲基苯的低温化学性质","authors":"Shijun Dong , Goutham Kukkadapu , Jinhu Liang , Xiaobei Cheng , Scott W. Wagnon , William J. Pitz , Henry J. Curran","doi":"10.1016/j.proci.2022.08.106","DOIUrl":null,"url":null,"abstract":"<div><p><span>1,2,4-trimethylbenzene is an important representative aromatic component of gasoline/diesel/jet fuels and thus it is necessary to understand its low-temperature chemistry. In this paper, ignition delay times (IDTs) of both 1,2,4-trimethylbenzene (124TMB) and its blends with </span><em>n</em><span>-heptane were measured at engine-like conditions using both a high-pressure shock tube and a rapid compression machine for fuel in ‘air’ mixtures at pressures of 10 and 30 atm and at temperatures in the range 600 – 1100 K. The experiments in this study show for the first time that 124TMB presents a two-stage ignition behavior at engine relevant conditions. Blending </span><em>n</em>-heptane with 124TMB can significantly increase mixture reactivity at temperatures below 1000 K. A new detailed mechanism has been developed to simulate the experimentally measured IDT data. The mechanism can capture well the two-stage ignition behavior as well as the ignition delays at different pressures, equivalence ratios over a wide temperature range, for both pure fuels and their blended mixtures. Flux analyses show that the benzylic radicals (formed via H-atom abstraction from the methyl groups ortho-sites on 124TMB) can add to O<sub>2</sub> forming RȮ<sub>2</sub> radicals, which can isomerize to <span><math><mover><mi>Q</mi><mo>˙</mo></mover></math></span>OOH by intramolecular H-atom transfer from the ortho- methyl group and these <span><math><mover><mi>Q</mi><mo>˙</mo></mover></math></span>OOH radicals undergo a second addition to O<sub>2</sub><span><span>. This is analogous to the chain branching reaction pathways of alkanes. The chain branching reaction pathways are responsible for the first-stage heat release of 124TMB. The competitions between chain branching and both chain propagating and chain termination reaction pathways lead to a less pronounced negative temperature coefficient (NTC) behavior for 124TMB </span>oxidation, compared to two-stage ignition behavior observed for alkanes and other fuels.</span></p></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"39 1","pages":"Pages 673-684"},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Understanding the low-temperature chemistry of 1,2,4-trimethylbenzene\",\"authors\":\"Shijun Dong , Goutham Kukkadapu , Jinhu Liang , Xiaobei Cheng , Scott W. Wagnon , William J. Pitz , Henry J. Curran\",\"doi\":\"10.1016/j.proci.2022.08.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>1,2,4-trimethylbenzene is an important representative aromatic component of gasoline/diesel/jet fuels and thus it is necessary to understand its low-temperature chemistry. In this paper, ignition delay times (IDTs) of both 1,2,4-trimethylbenzene (124TMB) and its blends with </span><em>n</em><span>-heptane were measured at engine-like conditions using both a high-pressure shock tube and a rapid compression machine for fuel in ‘air’ mixtures at pressures of 10 and 30 atm and at temperatures in the range 600 – 1100 K. The experiments in this study show for the first time that 124TMB presents a two-stage ignition behavior at engine relevant conditions. Blending </span><em>n</em>-heptane with 124TMB can significantly increase mixture reactivity at temperatures below 1000 K. A new detailed mechanism has been developed to simulate the experimentally measured IDT data. The mechanism can capture well the two-stage ignition behavior as well as the ignition delays at different pressures, equivalence ratios over a wide temperature range, for both pure fuels and their blended mixtures. Flux analyses show that the benzylic radicals (formed via H-atom abstraction from the methyl groups ortho-sites on 124TMB) can add to O<sub>2</sub> forming RȮ<sub>2</sub> radicals, which can isomerize to <span><math><mover><mi>Q</mi><mo>˙</mo></mover></math></span>OOH by intramolecular H-atom transfer from the ortho- methyl group and these <span><math><mover><mi>Q</mi><mo>˙</mo></mover></math></span>OOH radicals undergo a second addition to O<sub>2</sub><span><span>. This is analogous to the chain branching reaction pathways of alkanes. The chain branching reaction pathways are responsible for the first-stage heat release of 124TMB. The competitions between chain branching and both chain propagating and chain termination reaction pathways lead to a less pronounced negative temperature coefficient (NTC) behavior for 124TMB </span>oxidation, compared to two-stage ignition behavior observed for alkanes and other fuels.</span></p></div>\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"39 1\",\"pages\":\"Pages 673-684\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1540748922004606\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748922004606","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Understanding the low-temperature chemistry of 1,2,4-trimethylbenzene
1,2,4-trimethylbenzene is an important representative aromatic component of gasoline/diesel/jet fuels and thus it is necessary to understand its low-temperature chemistry. In this paper, ignition delay times (IDTs) of both 1,2,4-trimethylbenzene (124TMB) and its blends with n-heptane were measured at engine-like conditions using both a high-pressure shock tube and a rapid compression machine for fuel in ‘air’ mixtures at pressures of 10 and 30 atm and at temperatures in the range 600 – 1100 K. The experiments in this study show for the first time that 124TMB presents a two-stage ignition behavior at engine relevant conditions. Blending n-heptane with 124TMB can significantly increase mixture reactivity at temperatures below 1000 K. A new detailed mechanism has been developed to simulate the experimentally measured IDT data. The mechanism can capture well the two-stage ignition behavior as well as the ignition delays at different pressures, equivalence ratios over a wide temperature range, for both pure fuels and their blended mixtures. Flux analyses show that the benzylic radicals (formed via H-atom abstraction from the methyl groups ortho-sites on 124TMB) can add to O2 forming RȮ2 radicals, which can isomerize to OOH by intramolecular H-atom transfer from the ortho- methyl group and these OOH radicals undergo a second addition to O2. This is analogous to the chain branching reaction pathways of alkanes. The chain branching reaction pathways are responsible for the first-stage heat release of 124TMB. The competitions between chain branching and both chain propagating and chain termination reaction pathways lead to a less pronounced negative temperature coefficient (NTC) behavior for 124TMB oxidation, compared to two-stage ignition behavior observed for alkanes and other fuels.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.