{"title":"后脑皮质与长期记忆:从分子到行为。","authors":"Travis P Todd, David J Bucci","doi":"10.1155/2015/414173","DOIUrl":null,"url":null,"abstract":"<p><p>The retrosplenial cortex (RSC) is reciprocally connected with the hippocampus and various parahippocampal cortical regions, suggesting that RSC is well-positioned to contribute to hippocampal-dependent memory. Consistent with this, substantial behavioral evidence indicates that RSC is essential for consolidating and/or retrieving contextual and spatial memories. In addition, there is growing evidence that RSC neurons undergo activity-dependent plastic changes during memory formation and retrieval. In this paper we review both the behavioral and cellular/molecular data and posit that the RSC has a particularly important role in the storage and retrieval of spatial and contextual memories perhaps due its involvement in binding together multiple cues in the environment. We identify remaining questions and avenues for future research that take advantage of emerging methods to selectively manipulate RSC neurons both spatially and temporally and to image the RSC in awake, behaving animals. </p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2015 ","pages":"414173"},"PeriodicalIF":3.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562169/pdf/","citationCount":"0","resultStr":"{\"title\":\"Retrosplenial Cortex and Long-Term Memory: Molecules to Behavior.\",\"authors\":\"Travis P Todd, David J Bucci\",\"doi\":\"10.1155/2015/414173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The retrosplenial cortex (RSC) is reciprocally connected with the hippocampus and various parahippocampal cortical regions, suggesting that RSC is well-positioned to contribute to hippocampal-dependent memory. Consistent with this, substantial behavioral evidence indicates that RSC is essential for consolidating and/or retrieving contextual and spatial memories. In addition, there is growing evidence that RSC neurons undergo activity-dependent plastic changes during memory formation and retrieval. In this paper we review both the behavioral and cellular/molecular data and posit that the RSC has a particularly important role in the storage and retrieval of spatial and contextual memories perhaps due its involvement in binding together multiple cues in the environment. We identify remaining questions and avenues for future research that take advantage of emerging methods to selectively manipulate RSC neurons both spatially and temporally and to image the RSC in awake, behaving animals. </p>\",\"PeriodicalId\":51299,\"journal\":{\"name\":\"Neural Plasticity\",\"volume\":\"2015 \",\"pages\":\"414173\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562169/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Plasticity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/414173\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/8/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2015/414173","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/8/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Retrosplenial Cortex and Long-Term Memory: Molecules to Behavior.
The retrosplenial cortex (RSC) is reciprocally connected with the hippocampus and various parahippocampal cortical regions, suggesting that RSC is well-positioned to contribute to hippocampal-dependent memory. Consistent with this, substantial behavioral evidence indicates that RSC is essential for consolidating and/or retrieving contextual and spatial memories. In addition, there is growing evidence that RSC neurons undergo activity-dependent plastic changes during memory formation and retrieval. In this paper we review both the behavioral and cellular/molecular data and posit that the RSC has a particularly important role in the storage and retrieval of spatial and contextual memories perhaps due its involvement in binding together multiple cues in the environment. We identify remaining questions and avenues for future research that take advantage of emerging methods to selectively manipulate RSC neurons both spatially and temporally and to image the RSC in awake, behaving animals.
期刊介绍:
Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.